Download Free Principles Of Biotechnology Book in PDF and EPUB Free Download. You can read online Principles Of Biotechnology and write the review.

This book is a short introduction to the engineering principles of harnessing the vast potential of microorganisms, and animal and plant cells in making biochemical products. It was written for scientists who have no background in engineering, and for engineers with minimal background in biology. The overall subject dealt with is process. But the coverage goes beyond the process of biomanufacturing in the bioreactor, and extends to the factory of cell’s biosynthetic machinery. Starting with an overview of biotechnology and organism, engineers are eased into biochemical reactions and life scientists are exposed to the technology of production using cells. Subsequent chapters allow engineers to be acquainted with biochemical pathways, while life scientist learn about stoichiometric and kinetic principles of reactions and cell growth. This leads to the coverage of reactors, oxygen transfer and scale up. Following three chapters on biomanufacturing of current and future importance, i.e. cell culture, stem cells and synthetic biology, the topic switches to product purification, first with a conceptual coverage of operations used in bioseparation, and then a more detailed analysis to provide a conceptual understanding of chromatography, the modern workhorse of bioseparation. Drawing on principles from engineering and life sciences, this book is for practitioners in biotechnology and bioengineering. The author has used the book for a course for advanced students in both engineering and life sciences. To this end, problems are provided at the end of each chapter.
The second edition explains the principles of recombinant DNA technology as well as other important techniques such as DNA sequencing, the polymerase chain reaction, and the production of monclonal antibodies.
Provides students and researchers with an easy-to-understand introduction to the fundamentals of biotechnology. Biotechnology may sound like the latest craze in science fiction, but in truth, humans have depended upon it for thousands of years. Students and researchers interested in learning more about topics such as Artificial Selection, Biofuels, Cell Biology, Chimeras, and more will find over 120 easy-to-understand entries in this addition to the Principles of Science series. More than 120 accessible entries that cover topics related to such important areas as genetics, microbiology, biochemistry, biophysics, biosynthesis and biorobotics. Coverage includes: Artificial Selection Biofuels Biomimetics Bioremediation Cell Biology Chimera Gene Therapy Hybridization Immune Suppression Microbiology Pharmacogenomics Stem Cells Virotherapy This volume provides readers with the important information they need to understand the basic concepts, philospophical and ethical arguments, possibilities, and consequences of biotechnology. This text will be an important addition to high school and undergraduate libraries with a focus on providing up-to-date resources for students engaged in STEM studies as well as to science collections at all levels.
Designed to inform and inspire the next generation of plant biotechnologists Plant Biotechnology and Genetics explores contemporary techniques and applications of plant biotechnology, illustrating the tremendous potential this technology has to change our world by improving the food supply. As an introductory text, its focus is on basic science and processes. It guides students from plant biology and genetics to breeding to principles and applications of plant biotechnology. Next, the text examines the critical issues of patents and intellectual property and then tackles the many controversies and consumer concerns over transgenic plants. The final chapter of the book provides an expert forecast of the future of plant biotechnology. Each chapter has been written by one or more leading practitioners in the field and then carefully edited to ensure thoroughness and consistency. The chapters are organized so that each one progressively builds upon the previous chapters. Questions set forth in each chapter help students deepen their understanding and facilitate classroom discussions. Inspirational autobiographical essays, written by pioneers and eminent scientists in the field today, are interspersed throughout the text. Authors explain how they became involved in the field and offer a personal perspective on their contributions and the future of the field. The text's accompanying CD-ROM offers full-color figures that can be used in classroom presentations with other teaching aids available online. This text is recommended for junior- and senior-level courses in plant biotechnology or plant genetics and for courses devoted to special topics at both the undergraduate and graduate levels. It is also an ideal reference for practitioners.
The future is now—this groundbreaking textbook illustrates how biotechnology has radically changed the way we think about health care Biotechnology is delivering not only new products to diagnose, prevent, and treat human disease but entirely new approaches to a wide range of difficult biomedical challenges. Because of advances in biotechnology, hundreds of new therapeutic agents, diagnostic tests, and vaccines have been developed and are available in the marketplace. In this jargon-free, easy-to-read textbook, the authors demystify the discipline of medical biotechnology and present a roadmap that provides a fundamental understanding of the wide-ranging approaches pursued by scientists to diagnose, prevent, and treat medical conditions. Medical Biotechnology is written to educate premed and medical students, dental students, pharmacists, optometrists, nurses, nutritionists, genetic counselors, hospital administrators, and individuals who are stakeholders in the understanding and advancement of biotechnology and its impact on the practice of modern medicine. Hardcover, 700 pages, full-color illustrations throughout, glossary, index.
In the second edition of this bestselling textbook, new materials have been added, including a new chapter on real time polymerase chain reaction (RTPCR) and a chapter on fungal solid state cultivation. There already exist a number of excellent general textbooks on microbiology and biotechnology that deal with the basic principles of microbial biotechnology. To complement them, this book focuses on the various applications of microbial-biotechnological principles. A teaching-based format is adopted, whereby working problems, as well as answers to frequently asked questions, supplement the main text. The book also includes real life examples of how the application of microbial-biotechnological principles has achieved breakthroughs in both research and industrial production.Although written for polytechnic students and undergraduates, the book contains sufficient information to be used as a reference for postgraduate students and lecturers. It may also serve as a resource book for corporate planners, managers and applied research personnel.
Because of rapid developments in the biotechnology industry—and the wide range of disciplines that contribute to its collective growth—there is a heightened need to more carefully plan and fully integrate biotech development projects. Despite the wealth of operations experience and associated literature available, no single book has yet offered a comprehensive, practical guide to fundamentals. Filling the void, Biotechnology Operations: Principles and Practices reflects this integrative philosophy, serving as a practical guide for students, professionals, or anyone else with interests in the biotech industry. Although many books emphasize specific technical aspects of biotech, this is perhaps the first to integrate essential concepts of product development and scientific and management skills with the seven functional areas of biotechnology: Biomanufacturing Clinical trials Nonclinical studies Project management Quality assurance Quality control Regulatory affairs A practical roadmap to optimizing biotechnology operations, this reference illustrates how to use specific product planning, design, and project management processes to seamlessly merge plans and efforts in the key functional areas. Applying lessons learned throughout the nascent history of biotech, author Michael Roy highlights developmental principles that could bring future products to market more safely and efficiently. Drawing from his experiences working in industry and teaching a graduate course at the University of Wisconsin, this hotly anticipated book clarifies basic methodologies and practices to help reduce risks and resolve problems as future technological discoveries are developed into tangible products.
Providing a strong base in this emerging and highly promising field, Molecular Biotechnology: Principles and Practice strikes a balance between two important aspects of the science - the theory of molecular biology and the experimental approach to the study of biological processes. The main feature of this book is that it covers a wide range of molecular techniques in biotechnology and is designed to be a student- and teacher-friendly textbook. Each technique is described conceptually, followed by a detailed experimental account of the steps involved. The book can also serve as reference to the interested reader who is venturing into the field of biotechnology for the first time.
Anaerobic biotechnology is a cost-effective and sustainable means of treating waste and wastewaters that couples treatment processes with the reclamation of useful by-products and renewable biofuels. This means of treating municipal, agricultural, and industrial wastes allows waste products to be converted to value-added products such as biofuels, biofertilizers, and other chemicals. Anaerobic Biotechnology for Bioenergy Production: Principles and Applications provides the reader with basic principles of anaerobic processes alongside practical uses of anaerobic biotechnology options. This book will be a valuable reference to any professional currently considering or working with anaerobic biotechnology options.