Download Free Principles And Methods Of Data Cleaning Book in PDF and EPUB Free Download. You can read online Principles And Methods Of Data Cleaning and write the review.

Focusing on the use of technology in survey research, this book integrates both theory and application and covers important elements of survey research including survey design, implementation and continuing data management.
The first truly interdisciplinary text on data mining, blending the contributions of information science, computer science, and statistics. The growing interest in data mining is motivated by a common problem across disciplines: how does one store, access, model, and ultimately describe and understand very large data sets? Historically, different aspects of data mining have been addressed independently by different disciplines. This is the first truly interdisciplinary text on data mining, blending the contributions of information science, computer science, and statistics. The book consists of three sections. The first, foundations, provides a tutorial overview of the principles underlying data mining algorithms and their application. The presentation emphasizes intuition rather than rigor. The second section, data mining algorithms, shows how algorithms are constructed to solve specific problems in a principled manner. The algorithms covered include trees and rules for classification and regression, association rules, belief networks, classical statistical models, nonlinear models such as neural networks, and local "memory-based" models. The third section shows how all of the preceding analysis fits together when applied to real-world data mining problems. Topics include the role of metadata, how to handle missing data, and data preprocessing.
Many researchers jump straight from data collection to data analysis without realizing how analyses and hypothesis tests can go profoundly wrong without clean data. This book provides a clear, step-by-step process of examining and cleaning data in order to decrease error rates and increase both the power and replicability of results. Jason W. Osborne, author of Best Practices in Quantitative Methods (SAGE, 2008) provides easily-implemented suggestions that are research-based and will motivate change in practice by empirically demonstrating, for each topic, the benefits of following best practices and the potential consequences of not following these guidelines. If your goal is to do the best research you can do, draw conclusions that are most likely to be accurate representations of the population(s) you wish to speak about, and report results that are most likely to be replicated by other researchers, then this basic guidebook will be indispensible.
Think about your data intelligently and ask the right questions Key FeaturesMaster data cleaning techniques necessary to perform real-world data science and machine learning tasksSpot common problems with dirty data and develop flexible solutions from first principlesTest and refine your newly acquired skills through detailed exercises at the end of each chapterBook Description Data cleaning is the all-important first step to successful data science, data analysis, and machine learning. If you work with any kind of data, this book is your go-to resource, arming you with the insights and heuristics experienced data scientists had to learn the hard way. In a light-hearted and engaging exploration of different tools, techniques, and datasets real and fictitious, Python veteran David Mertz teaches you the ins and outs of data preparation and the essential questions you should be asking of every piece of data you work with. Using a mixture of Python, R, and common command-line tools, Cleaning Data for Effective Data Science follows the data cleaning pipeline from start to end, focusing on helping you understand the principles underlying each step of the process. You'll look at data ingestion of a vast range of tabular, hierarchical, and other data formats, impute missing values, detect unreliable data and statistical anomalies, and generate synthetic features. The long-form exercises at the end of each chapter let you get hands-on with the skills you've acquired along the way, also providing a valuable resource for academic courses. What you will learnIngest and work with common data formats like JSON, CSV, SQL and NoSQL databases, PDF, and binary serialized data structuresUnderstand how and why we use tools such as pandas, SciPy, scikit-learn, Tidyverse, and BashApply useful rules and heuristics for assessing data quality and detecting bias, like Benford’s law and the 68-95-99.7 ruleIdentify and handle unreliable data and outliers, examining z-score and other statistical propertiesImpute sensible values into missing data and use sampling to fix imbalancesUse dimensionality reduction, quantization, one-hot encoding, and other feature engineering techniques to draw out patterns in your dataWork carefully with time series data, performing de-trending and interpolationWho this book is for This book is designed to benefit software developers, data scientists, aspiring data scientists, teachers, and students who work with data. If you want to improve your rigor in data hygiene or are looking for a refresher, this book is for you. Basic familiarity with statistics, general concepts in machine learning, knowledge of a programming language (Python or R), and some exposure to data science are helpful.
Learn how to use R to turn raw data into insight, knowledge, and understanding. This book introduces you to R, RStudio, and the tidyverse, a collection of R packages designed to work together to make data science fast, fluent, and fun. Suitable for readers with no previous programming experience, R for Data Science is designed to get you doing data science as quickly as possible. Authors Hadley Wickham and Garrett Grolemund guide you through the steps of importing, wrangling, exploring, and modeling your data and communicating the results. You'll get a complete, big-picture understanding of the data science cycle, along with basic tools you need to manage the details. Each section of the book is paired with exercises to help you practice what you've learned along the way. You'll learn how to: Wrangle—transform your datasets into a form convenient for analysis Program—learn powerful R tools for solving data problems with greater clarity and ease Explore—examine your data, generate hypotheses, and quickly test them Model—provide a low-dimensional summary that captures true "signals" in your dataset Communicate—learn R Markdown for integrating prose, code, and results
This encyclopedia will be an essential resource for our times, reflecting the fact that we currently are living in an expanding data-driven world. Technological advancements and other related trends are contributing to the production of an astoundingly large and exponentially increasing collection of data and information, referred to in popular vernacular as “Big Data.” Social media and crowdsourcing platforms and various applications ― “apps” ― are producing reams of information from the instantaneous transactions and input of millions and millions of people around the globe. The Internet-of-Things (IoT), which is expected to comprise tens of billions of objects by the end of this decade, is actively sensing real-time intelligence on nearly every aspect of our lives and environment. The Global Positioning System (GPS) and other location-aware technologies are producing data that is specific down to particular latitude and longitude coordinates and seconds of the day. Large-scale instruments, such as the Large Hadron Collider (LHC), are collecting massive amounts of data on our planet and even distant corners of the visible universe. Digitization is being used to convert large collections of documents from print to digital format, giving rise to large archives of unstructured data. Innovations in technology, in the areas of Cloud and molecular computing, Artificial Intelligence/Machine Learning, and Natural Language Processing (NLP), to name only a few, also are greatly expanding our capacity to store, manage, and process Big Data. In this context, the Encyclopedia of Big Data is being offered in recognition of a world that is rapidly moving from gigabytes to terabytes to petabytes and beyond. While indeed large data sets have long been around and in use in a variety of fields, the era of Big Data in which we now live departs from the past in a number of key respects and with this departure comes a fresh set of challenges and opportunities that cut across and affect multiple sectors and disciplines, and the public at large. With expanded analytical capacities at hand, Big Data is now being used for scientific inquiry and experimentation in nearly every (if not all) disciplines, from the social sciences to the humanities to the natural sciences, and more. Moreover, the use of Big Data has been well established beyond the Ivory Tower. In today’s economy, businesses simply cannot be competitive without engaging Big Data in one way or another in support of operations, management, planning, or simply basic hiring decisions. In all levels of government, Big Data is being used to engage citizens and to guide policy making in pursuit of the interests of the public and society in general. Moreover, the changing nature of Big Data also raises new issues and concerns related to, for example, privacy, liability, security, access, and even the veracity of the data itself. Given the complex issues attending Big Data, there is a real need for a reference book that covers the subject from a multi-disciplinary, cross-sectoral, comprehensive, and international perspective. The Encyclopedia of Big Data will address this need and will be the first of such reference books to do so. Featuring some 500 entries, from "Access" to "Zillow," the Encyclopedia will serve as a fundamental resource for researchers and students, for decision makers and leaders, and for business analysts and purveyors. Developed for those in academia, industry, and government, and others with a general interest in Big Data, the encyclopedia will be aimed especially at those involved in its collection, analysis, and use. Ultimately, the Encyclopedia of Big Data will provide a common platform and language covering the breadth and depth of the topic for different segments, sectors, and disciplines.
This is an overview of the end-to-end data cleaning process. Data quality is one of the most important problems in data management, since dirty data often leads to inaccurate data analytics results and incorrect business decisions. Poor data across businesses and the U.S. government are reported to cost trillions of dollars a year. Multiple surveys show that dirty data is the most common barrier faced by data scientists. Not surprisingly, developing effective and efficient data cleaning solutions is challenging and is rife with deep theoretical and engineering problems. This book is about data cleaning, which is used to refer to all kinds of tasks and activities to detect and repair errors in the data. Rather than focus on a particular data cleaning task, this book describes various error detection and repair methods, and attempts to anchor these proposals with multiple taxonomies and views. Specifically, it covers four of the most common and important data cleaning tasks, namely, outlier detection, data transformation, error repair (including imputing missing values), and data deduplication. Furthermore, due to the increasing popularity and applicability of machine learning techniques, it includes a chapter that specifically explores how machine learning techniques are used for data cleaning, and how data cleaning is used to improve machine learning models. This book is intended to serve as a useful reference for researchers and practitioners who are interested in the area of data quality and data cleaning. It can also be used as a textbook for a graduate course. Although we aim at covering state-of-the-art algorithms and techniques, we recognize that data cleaning is still an active field of research and therefore provide future directions of research whenever appropriate.
Engineering Asset Management discusses state-of-the-art trends and developments in the emerging field of engineering asset management as presented at the Fourth World Congress on Engineering Asset Management (WCEAM). It is an excellent reference for practitioners, researchers and students in the multidisciplinary field of asset management, covering such topics as asset condition monitoring and intelligent maintenance; asset data warehousing, data mining and fusion; asset performance and level-of-service models; design and life-cycle integrity of physical assets; deterioration and preservation models for assets; education and training in asset management; engineering standards in asset management; fault diagnosis and prognostics; financial analysis methods for physical assets; human dimensions in integrated asset management; information quality management; information systems and knowledge management; intelligent sensors and devices; maintenance strategies in asset management; optimisation decisions in asset management; risk management in asset management; strategic asset management; and sustainability in asset management.