Download Free Primary Central Nervous System Lymphoma Book in PDF and EPUB Free Download. You can read online Primary Central Nervous System Lymphoma and write the review.

This book provides evidence-based management in neuro-oncology covering all aspects such as pathology, radiology, surgery, radiation, and chemotherapy.The field of neuro-oncology is rapidly evolving and new evidence is coming out every day towards the optimal management of brain tumors. This necessitates a requirement of a complete guide that shall provide an evidence-based and personalized approach towards dealing with patients. This book also covers recent advances in personalized treatment formed through the relevant basis of anatomy, imaging, radiology, surgical, radiation and systemic treatment of brain and spinal tumors. In addition it also covers the , practical aspects of the planning of the Gamma knife and other radio surgical aspects. The book shall provide valuable assistance to practicing neuro-oncologists to practice better evidence-based personalized medicine.
This text provides a state-of-the-art overview on Non-Hodgkin's lymphoma (NHL) in children and adolescents. The volume is divided into seven sections, each of which focuses on a critical component of pediatric NHL, including history and epidemiology, pathology and molecular biology, disease evaluation and response, common and rare sub-types of NHL, and current and novel treatment strategies. The text also comprehensively reviews the late effects of treatment, quality of patient life, and NHL treatment in countries with limited resources. Written by experts in the field, Non-Hodgkin's Lymphoma in Childhood and Adolescence is a valuable resource for clinicians and practitioners who treat children and adolescents with NHL.
With treatment approaches and the field of neuro-oncology neuroimaging changing rapidly, this third edition of the Handbook of Neuro-Oncology Neuroimaging is very relevant to those in the field, providing a single-source, comprehensive, reference handbook of the most up-to-date clinical and technical information regarding the application of neuroimaging techniques to brain tumor and neuro-oncology patients. This new volume will have updates on all of the material from the second edition, and in addition features several new important chapters covering diverse topics such as imaging for the use of Laser Interstitial Thermal Therapy, advanced imaging techniques in radiation therapy, therapeutic treatment fields, response assessment in clinical trials, surgical planning of neoplastic disease of the spine, and more. Sections first overview neuro-oncological disorders before delving into the physics and basic science of neuroimaging and great focus on CT and MRI. The book then focuses on advances in the neuroimaging of brain tumors and neuroimaging of specific tumor types. There is also discussion of neuroimaging of other neuro-oncological syndromes. This book will serve as a resource of background information to neuroimaging researchers and basic scientists with an interest in brain tumors and neuro-oncology. Summarizes translational research on brain imaging for brain tumors Discusses limitations of neuroimaging for diagnosis and treatment Presents advanced imaging technologies, including CT, MRI, and PET Contains new coverage on Laser Interstitial Thermal Therapy, radiation therapy, clinical trials, and more
This book describes the basics, the challenges and the limitations of state of the art brain tumor imaging and examines in detail its impact on diagnosis and treatment monitoring. It opens with an introduction to the clinically relevant physical principles of brain imaging. Since MR methodology plays a crucial role in brain imaging, the fundamental aspects of MR spectroscopy, MR perfusion and diffusion-weighted MR methods are described, focusing on the specific demands of brain tumor imaging. The potential and the limits of new imaging methodology are carefully addressed and compared to conventional MR imaging. In the main part of the book, the most important imaging criteria for the differential diagnosis of solid and necrotic brain tumors are delineated and illustrated in examples. A closing section is devoted to the use of MR methods for the monitoring of brain tumor therapy. The book is intended for radiologists, neurologists, neurosurgeons, oncologists and other scientists in the biomedical field with an interest in neuro-oncology.
This book provides a comprehensive overview of brain metastases, from the molecular biology aspects to therapeutic management and perspectives. Due to the increasing incidence of these tumors and the urgent need to effectively control brain metastatic diseases in these patients, new therapeutic strategies have emerged in recent years. The volume discusses all these innovative approaches combined with new surgical techniques (fluorescence, functional mapping, integrated navigation), novel radiation therapy techniques (stereotactic radiosurgery) and new systemic treatment approaches such as targeted- and immunotherapy. These combination strategies represent a new therapeutic model in brain metastatic patients in which each medical practitioner (neurosurgeon, neurologist, medical oncologist, radiation oncologist) plays a pivotal role in defining the optimal treatment in a multidisciplinary approach. Written by recognized experts in the field, this book is a valuable tool for neurosurgeons, neuro-oncologists, neuroradiologists, medical oncologists, radiation oncologists, cognitive therapists, basic scientists and students working in the area of brain tumors.
This book gathers a collection of cases with challenging diagnoses, in which nuclear medicine examinations have been particularly helpful in terms of the final diagnosis or follow-up. The cases presented chiefly involve patients with neurodegenerative disorders, epilepsy and brain tumors. The book is intended for nuclear medicine specialists as well as clinicians, offering essential guidance on the interpretation of neurology cases in the clinical setting, particularly with regard to correctly interpreting diagnostic imaging procedures. The authors were selected from the members of the Neuroimaging Committee of the EANM and have extensive experience as clinicians and teachers within the Nuclear Medicine Community.
This book summarizes current knowledge of the biology and molecular pathogenesis of aggressive lymphomas and reviews the state of the art in diagnostic and therapeutic strategies. The aim is both to provide the reader with a sound understanding of the very significant progress that has been achieved in the understanding and management of these malignancies over recent years and to facilitate appropriate choice of the therapeutic strategy in individual cases. The assessment of different prognostic parameters are clearly presented in order to permits effective risk stratification that impacts on treatment choice. Recent insights into lymphomagenesis are exemplified and may assist in identifying emerging therapeutic targets. The comprehensive and up-to-date nature of the book will make it an ideal reference for all physicians and researchers interested in lymphoma, including clinicians from various medical specialties, biologists, pathologists, radiologists and nuclear medicine specialist, as well as students.
Although non-Hodgkin's lymphoma (NHL) is a frequent cancer worldwide, primary central nervous system (CNS) lymphoma (PCNSL) is a rare presentation, with an incidence of less than 0.5 per 100,000 persons-years in the western world. In the vast majority of cases, it has the histology of a diffuse large B-cell lymphoma (DLBCL) and is a hardly curable disease with high relapse risk. Therapeutic options are limited by blood-brain barrier penetration of drugs and because of its low-incidence high-grade evidence from large studies is lacking, current management being based on reports on rather small cohorts. The current standard first-line treatment for PCNSL consists of high-dose methotrexate (HD-MTX) in combination with a variety of drugs and consolidation whole-brain radiotherapy, the latter being progressively replaced by chemotherapy. For patients relapsing after first-line treatment, intensive chemotherapy with autologous stem cell support is a feasible and relatively safe salvage therapy. In the present chapter, we briefly discuss primary central nervous system lymphoma management and review current therapeutic options and evidence-based recommendations. We discuss the role of whole-brain radiotherapy (WBRT) and new prospects to avoid this side effect-ridden approach. Also, we will look at new therapeutic approaches currently under investigation, including immunotherapy.
This is the second edition of a book called "Lymphoma of the Nervous System," which was published by Butterworth-Heinemann (B-H) in 2004. Lymphoma and Leukemia of the Nervous System is a comprehensive review of this challenging group of diseases and should be useful for the practicing neurologist, hematologist, oncologist and for any practitioner involved in the management of these patients.
Approximately 40% of lung cancer patients will develop central nervous system (CNS) metastases during the course of their disease. Most of these are brain metastases, but up to 10% will develop leptomeningeal metastases. Known risk factors for CNS metastases development are small cell lung cancer (SCLC), adenocarcinoma histology, epidermal growth factor receptor (EGFR) mutant or anaplastic lymphoma kinase (ALK) rearranged lung cancer, advanced nodal status, tumor stage and younger age. CNS metastases can have a negative impact on quality of life (QoL) and overall survival (OS). The proportion of lung cancer patients diagnosed with CNS metastases has increased over the years due to increased use of brain imaging as part of initial cancer staging, advances in imaging techniques and better systemic disease control. Post contrast gadolinium enhanced magnetic resonance imaging (gd-MRI) is preferred, however when this is contra-indicated a contrast enhanced computed tomography (CE-CT) is mentioned as an alternative option. When CNS metastases are diagnosed, local treatment options consist of radiotherapy (stereotactic or whole brain) and surgery. Local treatment can be complicated by symptomatic radiation necrosis for which no high level evidence based treatment exists. Moreover, differential diagnosis with metastasis progression is difficult. Systemic treatment options have expanded over the last years. Until recently, chemotherapy was the only treatment option with a poor penetration in the CNS. Angiogenesis inhibitors are promising in the treatment of primary CNS tumors as well as radiation necrosis but clinical trials of anti-angiogenic agents in NSCLC have largely excluded patients with CNS metastases. Furthermore, research has also focused on methods to prevent development of CNS disease, for example with prophylactic cranial irradiation. Recently, checkpoint inhibitors have become available for NSCLC patients, and tyrosine kinase inhibitors (TKIs) have improved prognosis significantly in those with a druggable driver mutation. Newer TKIs are often designed to have better CNS penetration compared to first-generation TKIs. Despite advances in treatment options CNS metastases remain a problem in lung cancer and cause morbidity and mortality. This Research Topic provides an extensive resource of articles describing advances in CNS metastases management in lung cancer patients, from prevention to diagnosis and treatment.