Download Free Preventing Extinction Of At Risk Plant Species In A Complex World Book in PDF and EPUB Free Download. You can read online Preventing Extinction Of At Risk Plant Species In A Complex World and write the review.

Earth's current biodiversity crisis is now considered a true mass extinction event, with species level extinction rates well above background rates and population level extinction rates orders of magnitude more common that species extinctions. There are many threats driving this loss of biodiversity. How each threat impacts the viability of a species is highly context dependent, but all are anthropogenic in origin and so as the human population continues to increase, so too will the pressure of these threats on our natural systems. Ultimately, how much a threat decreases the viability of a species depends on how that threat influences a species' demographic vital rates and population sizes. Therefore, in this dissertation, I use demographic modeling to quantify viability and the impact of threats on viability for many rare or at-risk plant species. Then, I use the results of those models to make management recommendations to reduce plant species' risk of extinction. I had three goals for my dissertation. My first goal was to simultaneously quantify the effects of multiple threats on the viability of two rare plant species as case studies to determine whether incorporating the complexity of interacting threats would change management recommendations. In the first case study, I found an interaction between the increase in drought frequency expected with climate change the habitat management frequency of Cedar Glades on the viability of Astragulus bibullatus. Typical management for open habitats like Cedar Glades is frequent disturbance. But by detecting this interactive effect, I was able to recommend managing disturbance to maintain two types of environments across a landscape; those that promote high survivorship during climatically unfavorable (drought) years, and those that promote increased reproduction and recruitment during climatically favorable (non-drought) years. In my second case study, I found an interaction between local scale threats (woody species encroachment and browsing by White Tailed deer) and climate change on the viability of Eurybia furcata. This interaction was such that populations well managed for local threats are not expected to be vulnerable to climate change, but populations with high levels of local threats are expected to be driven extinct as the climate changes. This result suggests that management actions targeting local threats (mostly woody invasive species encroachment) could increase E. furcata's viability in two ways; by reducing the direct negative effect of woody encroachment and indirectly by decreasing the impact of climate change. Therefore, in both systems, I showed that complex non-additive effects among threats influence what is the most optimal or most cost-efficient management strategy. My second goal was to expand the use of count-based population monitoring data in plant conservation biology. To my knowledge, I am the first to use this type of data to compare the relative impacts of many threats and test for non-additive effects among them. The methods I developed in my dissertation use these data for viability and threat assessments and can be widely applied to count-based monitoring data already in existence, expanding the use of these data in rare plant species conservation globally. My last goal was to determine if incorporating complex multi-threat assessments into conservation decision making could substantially improve conservation outcomes over our current methods, which are largely based on practitioner observation and experience. I had a unique opportunity through a long-term rare plant monitoring program to compare assessments of species' viability and the impact of threats on viability between practitioner's expert opinions and quantitative analyses. I found no significant correlations between them, indicating the two sources of information result in conflicting priorities for rare plant conservation. Then, I showed that this conflict could arise from the complexity of threats themselves. For example, I found a strong three-way interaction among threats showing that rare plant species are particularly vulnerable to the compounding effects of threats during the time immediately after a disturbance management event (e.g. prescribed fire). Thus, making an observational assessment of any one theat difficult as the impact of the one threat is different depending on the level of another. Overall, all aspects of my dissertation highlight the critical need for comprehensive, multi-threat assessments to better understand what is causing a species to have poor viability, to more effectively manage rare plant species to reduce their risk of extinction, and ultimately to better combat the global biodiversity crisis.
This handbook is a guide to the federal Endangered Species Act, the primary U.S. law aimed at protecting species of animals and plants from human threats to their survival. It is intended for lawyers, government agency employees, students, community activists, businesspeople, and any citizen who wants to understand the Act--its history, provisions, accomplishments, and failures.
The research paper "Extinction Risk from Climate Change" published in the journal Nature in January 2004 created front-page headlines around the world. The notion that climate change could drive more than a million species to extinction captured both the popular imagination and the attention of policy-makers, and provoked an unprecedented round of scientific critique. Saving a Million Species reconsiders the central question of that paper: How many species may perish as a result of climate change and associated threats? Leaders from a range of disciplines synthesize the literature, refine the original estimates, and elaborate the conservation and policy implications. The book: examines the initial extinction risk estimates of the original paper, subsequent critiques, and the media and policy impact of this unique study presents evidence of extinctions from climate change from different time frames in the past explores extinctions documented in the contemporary record sets forth new risk estimates for future climate change considers the conservation and policy implications of the estimates. Saving a Million Species offers a clear explanation of the science behind the headline-grabbing estimates for conservationists, researchers, teachers, students, and policy-makers. It is a critical resource for helping those working to conserve biodiversity take on the rapidly advancing and evolving global stressor of climate change-the most important issue in conservation biology today, and the one for which we are least prepared.
A historical overview of plant legislation, conservation, and preservation.
Biological homogenization is the dominant process shaping the future global biosphere. As global transportation becomes faster and more frequent, it is inevitable that biotic intermixing will increase. Unique local biotas will become extinct only to be replaced by already widespread biotas that can tolerate human activities. This process is affecting all aspects of our world: language, economies, and ecosystems alike. The ultimate outcome is the loss of uniqueness and the growth of uniformity. In this way, fast food restaurants exist in Moscow and Java Sparrows breed on Hawaii. Biological homogenization qualifies as a global environmental catastrophe. The Earth has never witnessed such a broad and complete reorganization of species distributions.
The flora of the Mediterranean islands includes many rare and localized species unique to the islands. Some of these are particularly threatened with extinction due to various pressures caused by people and their activities in Mediterranean ecosystems. It includes 50 descriptive sheets of species which are especially threatened, based on the IUCN Red List criteria. Each sheet gives a description of the species with illustrations and maps, emphasizing the threats to the species, existing conservation measures and additional measures needed for their conservation. Aimed at the layman, the text is easily accessible to the non-botanist.
Conservation Biology in Sub-Saharan Africa comprehensively explores the challenges and potential solutions to key conservation issues in Sub-Saharan Africa. Easy to read, this lucid and accessible textbook includes fifteen chapters that cover a full range of conservation topics, including threats to biodiversity, environmental laws, and protected areas management, as well as related topics such as sustainability, poverty, and human-wildlife conflict. This rich resource also includes a background discussion of what conservation biology is, a wide range of theoretical approaches to the subject, and concrete examples of conservation practice in specific African contexts. Strategies are outlined to protect biodiversity whilst promoting economic development in the region. Boxes covering specific themes written by scientists who live and work throughout the region are included in each chapter, together with recommended readings and suggested discussion topics. Each chapter also includes an extensive bibliography. Conservation Biology in Sub-Saharan Africa provides the most up-to-date study in the field. It is an essential resource, available on-line without charge, for undergraduate and graduate students, as well as a handy guide for professionals working to stop the rapid loss of biodiversity in Sub-Saharan Africa and elsewhere.
The Study of Plants in a Whole New Light “Matt Candeias succeeds in evoking the wonder of plants with wit and wisdom.” ―James T. Costa, PhD, executive director, Highlands Biological Station and author of Darwin's Backyard #1 New Release in Nature & Ecology, Plants, Botany, Horticulture, Trees, Biological Sciences, and Nature Writing & Essays In his debut book, internationally-recognized blogger and podcaster Matt Candeias celebrates the nature of plants and the extraordinary world of plant organisms. A botanist’s defense. Since his early days of plant restoration, this amateur plant scientist has been enchanted with flora and the greater environmental ecology of the planet. Now, he looks at the study of plants through the lens of his ever-growing houseplant collection. Using gardening, houseplants, and examples of plants around you, In Defense of Plants changes your relationship with the world from the comfort of your windowsill. The ruthless, horny, and wonderful nature of plants. Understand how plants evolve and live on Earth with a never-before-seen look into their daily drama. Inside, Candeias explores the incredible ways plants live, fight, have sex, and conquer new territory. Whether a blossoming botanist or a professional plant scientist, In Defense of Plants is for anyone who sees plants as more than just static backdrops to more charismatic life forms. In this easily accessible introduction to the incredible world of plants, you’ll find: • Fantastic botanical histories and plant symbolism • Passionate stories of flora diversity and scientific names of plant organisms • Personal tales of plantsman discovery through the study of plants If you enjoyed books like The Botany of Desire, What a Plant Knows, or The Soul of an Octopus, then you’ll love In Defense of Plants.
The Endangered Species Act (ESA) is a far-reaching law that has sparked intense controversies over the use of public lands, the rights of property owners, and economic versus environmental benefits. In this volume a distinguished committee focuses on the science underlying the ESA and offers recommendations for making the act more effective. The committee provides an overview of what scientists know about extinctionâ€"and what this understanding means to implementation of the ESA. Habitatâ€"its destruction, conservation, and fundamental importance to the ESAâ€"is explored in detail. The book analyzes: Concepts of speciesâ€"how the term "species" arose and how it has been interpreted for purposes of the ESA. Conflicts between species when individual species are identified for protection, including several case studies. Assessment of extinction risk and decisions under the ESAâ€"how these decisions can be made more effectively. The book concludes with a look beyond the Endangered Species Act and suggests additional means of biological conservation and ways to reduce conflicts. It will be useful to policymakers, regulators, scientists, natural-resource managers, industry and environmental organizations, and those interested in biological conservation.