Download Free Preparing Informal Science Educators Book in PDF and EPUB Free Download. You can read online Preparing Informal Science Educators and write the review.

This book provides a diverse look at various aspects of preparing informal science educators. Much has been published about the importance of preparing formal classroom educators, but little has been written about the importance, need, and best practices for training professionals who teach in aquariums, camps, parks, museums, etc. The reader will find that as a collective the chapters of the book are well-related and paint a clear picture that there are varying ways to approach informal educator preparation, but all are important. The volume is divided into five topics: Defining Informal Science Education, Professional Development, Designing Programs, Zone of Reflexivity: The Space Between Formal and Informal Educators, and Public Communication. The authors have written chapters for practitioners, researchers and those who are interested in assessment and evaluation, formal and informal educator preparation, gender equity, place-based education, professional development, program design, reflective practice, and science communication. Readers will draw meaning and usefulness from the array of professional perspectives and be stimulated to begin a quest to scaffold programs and professional development around the frameworks described in this book.
Informal science is a burgeoning field that operates across a broad range of venues and envisages learning outcomes for individuals, schools, families, and society. The evidence base that describes informal science, its promise, and effects is informed by a range of disciplines and perspectives, including field-based research, visitor studies, and psychological and anthropological studies of learning. Learning Science in Informal Environments draws together disparate literatures, synthesizes the state of knowledge, and articulates a common framework for the next generation of research on learning science in informal environments across a life span. Contributors include recognized experts in a range of disciplines-research and evaluation, exhibit designers, program developers, and educators. They also have experience in a range of settings-museums, after-school programs, science and technology centers, media enterprises, aquariums, zoos, state parks, and botanical gardens. Learning Science in Informal Environments is an invaluable guide for program and exhibit designers, evaluators, staff of science-rich informal learning institutions and community-based organizations, scientists interested in educational outreach, federal science agency education staff, and K-12 science educators.
This book introduces the reader to evidence-based non-formal and informal science learning considerations (including technological and pedagogical innovations) that have emerged in and empowered the information and communications technology (ICT) era. The contributions come from diverse countries and contexts (such as hackerspaces, museums, makerspaces, after-school activities) to support a wide range of educators, practitioners, and researchers (such as K-12 teachers, learning scientists, museum curators, librarians, parents, hobbyists). The documented considerations, lessons learned, and concepts have been extracted using diverse methods, ranging from experience reports and conceptual methods to quantitative studies and field observation using qualitative methods. This volume attempts to support the preparation, set-up, implementation, but also evaluation of informal learning activities to enhance science education.
Practitioners in informal science settings-museums, after-school programs, science and technology centers, media enterprises, libraries, aquariums, zoos, and botanical gardens-are interested in finding out what learning looks like, how to measure it, and what they can do to ensure that people of all ages, from different backgrounds and cultures, have a positive learning experience. Surrounded by Science: Learning Science in Informal Environments, is designed to make that task easier. Based on the National Research Council study, Learning Science in Informal Environments: People, Places, and Pursuits, this book is a tool that provides case studies, illustrative examples, and probing questions for practitioners. In short, this book makes valuable research accessible to those working in informal science: educators, museum professionals, university faculty, youth leaders, media specialists, publishers, broadcast journalists, and many others.
This comprehensive volume advances a vision of teacher preparation programs focused on core practices supporting ambitious science instruction. The book advocates for collaborative learning and building a community of teacher educators that can collectively share and refine strategies, tools, and practices. A renewed interest in practice-based teacher education paired with increasingly rigorous requirements, notably the Next Generation Science Standards, has highlighted the importance of teachers' deep disciplinary knowledge. This volume examines the compelling ways teacher educators across the country are using core practices to prepare preservice teachers for ambitious and equitable science teaching. With contributions from a wide network of teacher educators focusing on science education in various geographical and institutional contexts, Preparing Science Teachers Through Practice-Based Teacher Education serves as a valuable resource both for teacher educators and for administrators.
Science learning that takes place between and at the intersections of formal and informal science environments has not been systematically reviewed to offer a comprehensive understanding of the existing knowledge base. Bringing together theory and research, this volume describes the various ways in which learning science in various settings has been conceptualized as well as empirical evidence to illustrate how science learning in these settings can be supported.
When it’s time for a game change, you need a guide to the new rules. Helping Students Make Sense of the World Using Next Generation Science and Engineering Practices provides a play-by-play understanding of the practices strand of A Framework for K–12 Science Education (Framework) and the Next Generation Science Standards (NGSS). Written in clear, nontechnical language, this book provides a wealth of real-world examples to show you what’s different about practice-centered teaching and learning at all grade levels. The book addresses three important questions: 1. How will engaging students in science and engineering practices help improve science education? 2. What do the eight practices look like in the classroom? 3. How can educators engage students in practices to bring the NGSS to life? Helping Students Make Sense of the World Using Next Generation Science and Engineering Practices was developed for K–12 science teachers, curriculum developers, teacher educators, and administrators. Many of its authors contributed to the Framework’s initial vision and tested their ideas in actual science classrooms. If you want a fresh game plan to help students work together to generate and revise knowledge—not just receive and repeat information—this book is for you.
If you like the popular?Teaching Science Through Trade Books? columns in NSTA?s journal Science and Children, or if you?ve become enamored of the award-winning Picture-Perfect Science Lessons series, you?ll love this new collection. It?s based on the same time-saving concept: By using children?s books to pique students? interest, you can combine science teaching with reading instruction in an engaging and effective way.
Student-scientist-teacher interactions provide students with several advantages. They provide opportunities to interact with experts and professionals in the field, give students a chance at meeting a role model that may impact students' career choices, and increase awareness of available career options combined with an understanding of how their skills and interests affect their career decisions. Additionally, it enhances attitudes and interest toward STEM professions for students and grants opportunities to connect with scientists as human beings and see them as "real people," replacing stereotypical perceptions of scientists. Moreover, there are many advantages for the teacher or informal educator when these partnerships are established. For these reasons and more, numerous studies are often conducted involving the partnerships of students, scientists, and teachers. Enhancing Learning Opportunities Through Student, Scientist, and Teacher Partnerships organizes a collection of research on student-scientist-teacher partnerships and presents the models, benefits, implementation, and learning outcomes of these interactions. This book presents a variety of different scientist-student-teacher partnerships with research data to support different learning outcomes in settings like schools, after-school programs, museums, science centers, zoos, aquariums, children's museums, space centers, nature centers, and more. This book is ideal for in-service and preservice teachers, administrators, teacher educators, practitioners, stakeholders, researchers, academicians, and students interested in research on beneficial student-scientist-teacher partnerships/models in formal and informal settings.
Science, engineering, and technology permeate nearly every facet of modern life and hold the key to solving many of humanity's most pressing current and future challenges. The United States' position in the global economy is declining, in part because U.S. workers lack fundamental knowledge in these fields. To address the critical issues of U.S. competitiveness and to better prepare the workforce, A Framework for K-12 Science Education proposes a new approach to K-12 science education that will capture students' interest and provide them with the necessary foundational knowledge in the field. A Framework for K-12 Science Education outlines a broad set of expectations for students in science and engineering in grades K-12. These expectations will inform the development of new standards for K-12 science education and, subsequently, revisions to curriculum, instruction, assessment, and professional development for educators. This book identifies three dimensions that convey the core ideas and practices around which science and engineering education in these grades should be built. These three dimensions are: crosscutting concepts that unify the study of science through their common application across science and engineering; scientific and engineering practices; and disciplinary core ideas in the physical sciences, life sciences, and earth and space sciences and for engineering, technology, and the applications of science. The overarching goal is for all high school graduates to have sufficient knowledge of science and engineering to engage in public discussions on science-related issues, be careful consumers of scientific and technical information, and enter the careers of their choice. A Framework for K-12 Science Education is the first step in a process that can inform state-level decisions and achieve a research-grounded basis for improving science instruction and learning across the country. The book will guide standards developers, teachers, curriculum designers, assessment developers, state and district science administrators, and educators who teach science in informal environments.