Download Free Preparing Future Engineers Book in PDF and EPUB Free Download. You can read online Preparing Future Engineers and write the review.

'Educating Engineers' documents a range of solutions to the dilemmas facing the field of educating engineers across all areas.
This book has been developed with an intellectual framework to focus on the challenges and specific qualities applicable to graduates on the threshold of their careers. Young professionals have to establish their competence in complying with multifaceted sets of ethical, environmental, social, and technological parameters. This competence has a vital impact on the curricula of higher education programs, because professional bodies today rely on accredited degrees as the main route for membership. Consequently, this four-part book makes a suitable resource for a two-semester undergraduate course in professional practice and career development in universities and colleges. With its comprehensive coverage of a large variety of topics, each part of the book can be used as a reference for other related courses where sustainability, leadership, systems thinking and professional practice are evident and increasingly visible. Features Identifies the values that are unique to the engineering and computing professions, and promotes a general understanding of what it means to be a member of a profession Explains how ethical and legal considerations play a role in engineering practice Discusses the importance of professional communication and reflective practice to a range of audiences Presents the practices of leadership, innovation, entrepreneurship, safety and sustainability in engineering design Analyzes and discusses the contemporary practices of project management, artificial intelligence, and professional career development.
This report outlines 21 foundational, technical, and professional practice learning outcomes for individuals entering the professional practice of civil engineering.
What in the world is a social scientist doing collaborating with an engineer, and an engineer with a sociologist, and together on a book about drones and sociotechnical thinking in the classroom? This book emerges from a frustration that disciplinary silos create few opportunities for students to engage with others beyond their chosen major. In this volume, Hoople and Choi-Fitzpatrick introduce a sociotechnical approach to truly interdisciplinary education around the exciting topic of drones. The text, geared primarily at university faculty, provides a hands-on approach for engaging students in challenging conversations at the intersection of technology and society. Choi-Fitzpatrick and Hoople provide a turnkey solution complete with detailed lesson plans, course assignments, and drone-based case studies. They present a modular framework, describing how faculty might adopt their approach for any number of technologies and class configurations.
The National Academy of Engineering's 2012 forum, "Educating Engineers: Preparing 21st Century Leaders in the Context of New Modes of Learning," opened with presentations by six speakers who looked at the future of engineering and engineering education from their perspectives as educators, administrators, entrepreneurs, and innovators. Each speaker focused on just one facet of a tremendously complex picture. Yet together they outlined a new vision for engineering education based on flexible, interactive, lifelong learning and the merge of activities long held to be distinct. This summary of a forum recaps the six speaker's presentations.
Educating the Engineer of 2020 is grounded by the observations, questions, and conclusions presented in the best-selling book The Engineer of 2020: Visions of Engineering in the New Century. This new book offers recommendations on how to enrich and broaden engineering education so graduates are better prepared to work in a constantly changing global economy. It notes the importance of improving recruitment and retention of students and making the learning experience more meaningful to them. It also discusses the value of considering changes in engineering education in the broader context of enhancing the status of the engineering profession and improving the public understanding of engineering. Although certain basics of engineering will not change in the future, the explosion of knowledge, the global economy, and the way engineers work will reflect an ongoing evolution. If the United States is to maintain its economic leadership and be able to sustain its share of high-technology jobs, it must prepare for this wave of change.
In April 2009 a workshop was held to explore how engineering curricula could be enhanced to better prepare future engineers. The workshop, summarized in this volume, included individuals from industry, academia, government agencies, and professional societies. During the workshop participants addressed the rationale for the scope and sequence of current engineering curricula, considering both the positive aspects as well as those aspects that have outlived their usefulness. Other topics of discussion included the potential to enhance engineering curricula through creative uses of instructional technologies; the importance of inquiry-based activities as well as authentic learning experiences grounded in real world contexts; and the opportunities provided by looking more deeply at what personal and professional outcomes result from studying engineering. General themes that appeared to underlie the workshop attendees' discussions included desires to (a) restructure engineering curricula to focus on inductive teaching and learning, (b) apply integrated, just-in-time learning of relevant topics across STEM fields, and (c) make more extensive use and implementation of learning technologies. During breakout discussions, many additional suggestions were offered for means by which to facilitate curricular innovation.
To enhance the nation's economic productivity and improve the quality of life worldwide, engineering education in the United States must anticipate and adapt to the dramatic changes of engineering practice. The Engineer of 2020 urges the engineering profession to recognize what engineers can build for the future through a wide range of leadership roles in industry, government, and academia-not just through technical jobs. Engineering schools should attract the best and brightest students and be open to new teaching and training approaches. With the appropriate education and training, the engineer of the future will be called upon to become a leader not only in business but also in nonprofit and government sectors. The book finds that the next several decades will offer more opportunities for engineers, with exciting possibilities expected from nanotechnology, information technology, and bioengineering. Other engineering applications, such as transgenic food, technologies that affect personal privacy, and nuclear technologies, raise complex social and ethical challenges. Future engineers must be prepared to help the public consider and resolve these dilemmas along with challenges that will arise from new global competition, requiring thoughtful and concerted action if engineering in the United States is to retain its vibrancy and strength.