Download Free Preparing For The High Frontier Book in PDF and EPUB Free Download. You can read online Preparing For The High Frontier and write the review.

As the National Aeronautics and Space Administration (NASA) retires the Space Shuttle and shifts involvement in International Space Station (ISS) operations, changes in the role and requirements of NASA's Astronaut Corps will take place. At the request of NASA, the National Research Council (NRC) addressed three main questions about these changes: what should be the role and size of Johnson Space Center's (JSC) Flight Crew Operations Directorate (FCOD); what will be the requirements of astronaut training facilities; and is the Astronaut Corps' fleet of training aircraft a cost-effective means of preparing astronauts for NASA's spaceflight program? This report presents an assessment of several issues driven by these questions. This report does not address explicitly the future of human spaceflight.
In February 2009, the commercial communications satellite Iridium 33 collided with the Russian military communications satellite Cosmos 2251. The collision, which was not the first recorded between two satellites in orbit-but the most recent and alarming-produced thousands of pieces of debris, only a small percentage of which could be tracked by sensors located around the world. In early 2007, China tested a kinetic anti-satellite weapon against one of its own satellites, which also generated substantial amounts of space debris. These collisions highlighted the importance of maintaining accurate knowledge, and the associated uncertainty, of the orbit of each object in space. These data are needed to predict close approaches of space objects and to compute the probability of collision so that owners/operators can decide whether or not to make a collision avoidance maneuver by a spacecraft with such capability. The space object catalog currently contains more than 20,000 objects, and when the planned space fence radar becomes operational this number is expected to exceed 100,000. A key task is to determine if objects might come closer to each other, an event known as "conjunction," and the probability that they might collide. The U.S. Air Force is the primary U.S. government organization tasked with maintaining the space object catalog and data on all space objects. This is a complicated task, involving collecting data from a multitude of different sensors-many of which were not specifically designed to track orbiting objects-and fusing the tracking data along with other data, such as data from atmospheric models, to provide predictions of where objects will be in the future. The Committee for the Assessment of the U.S. Air Force's Astrodynamic Standards collected data and heard from numerous people involved in developing and maintaining the current astrodynamics standards for the Air Force Space Command (AFSPC), as well as representatives of the user community, such as NASA and commercial satellite owners and operators. Preventing collisions of space objects, regardless of their ownership, is in the national security interested of the United States. Continuing Kepler's Quest makes recommendations to the AFSPC in order for it to create and expand research programs, design and develop hardware and software, as well as determine which organizations to work with to achieve its goals.
From the early days of hot air ballooning to supersonic aircraft, High Frontier chronicles the history of flight in Pennsylvania. Early experimentation with lighter-than-air craft in the nineteenth century was followed by significant advances in aerodynamics, the advent of the airplane, and its gradual acceptance by the public. The state had its own contingent of inventors and aviators, who flew and crashed their homemade machines in countless exhibitions. After World War I commercial flights took wing, including government airmail delivery, and expanded airports, federal and state regulation of aeronautics laid the groundwork for the growth of the industry.
Access -- no single word better describes the primary concern of the exploration and development of space. Every participant in space activities -- civil, military, scientific, or commercial -- needs affordable, reliable, frequent, and flexible access to space. To Reach the High Frontier details the histories of the various space access vehicles developed in the United States since the birth of the space age in 1957. Each case study has been written by a specialist knowledgeable about the vehicle described and places each system in the larger context of the history of spaceflight. The technical challenge of reaching space with chemical rockets, the high costs associated with space launch, the long lead times necessary for scheduling flights, and the poor reliability of the rockets themselves show launch vehicles to be the space program's most difficult challenge.