Download Free Predictive Models For The Run Out Distance Of Clay Slopes Based On Material Point Method Book in PDF and EPUB Free Download. You can read online Predictive Models For The Run Out Distance Of Clay Slopes Based On Material Point Method and write the review.

This paper aims to propose run-out distance predictive models for clay slopes using the material point method (MPM), which can simulate the progressive failure process of slopes considering the strain softening effect of soils. A suite of 100 ground motions is selected from the NGA-West2 database and then scaled for conducting the dynamic analysis of slopes. The permanent slope displacements (D) can be classified into two categories, namely the “un-failure” category with D smaller than 0.4 m and the “failure” category with D in the range of 10 m to 15 m. It is found that peak ground velocity (PGV) exhibits the highest correlation with D for the “un-failure” category, whereas all ground-motion intensity measures (e.g., PGV, peak ground acceleration) are less correlated with D for the “failure” category. Therefore, the run-out distance of collapsed clay slopes is more related to the failure model rather than the triggering shaking intensities. Moreover, thousands of slope models with various slope angles, slope heights (H), soil densities, and peak and residual strength parameters are developed based on MPM. The run-out distances for the slopes being collapsed are then collected. Predictive models for different slope angles are proposed, which predict the run-out distance as a function of H, unit weight, residual cohesion, and residual friction angle. The proposed models are applicable for clay slopes with slope angles in the range of 30° to 45° and H in the range of 10 m to 30 m.
This practical guide provides the best introduction to large deformation material point method (MPM) simulations for geotechnical engineering. It provides the basic theory, discusses the different numerical features used in large deformation simulations, and presents a number of applications -- providing references, examples and guidance when using MPM for practical applications. MPM covers problems in static and dynamic situations within a common framework. It also opens new frontiers in geotechnical modelling and numerical analysis. It represents a powerful tool for exploring large deformation behaviours of soils, structures and fluids, and their interactions, such as internal and external erosion, and post-liquefaction analysis; for instance the post-failure liquid-like behaviours of landslides, penetration problems such as CPT and pile installation, and scouring problems related to underwater pipelines. In the recent years, MPM has developed enough for its practical use in industry, apart from the increasing interest in the academic world.
This practical guide provides the best introduction to large deformation material point method (MPM) simulations for geotechnical engineering. It provides the basic theory, discusses the different numerical features used in large deformation simulations, and presents a number of applications -- providing references, examples and guidance when using MPM for practical applications. MPM covers problems in static and dynamic situations within a common framework. It also opens new frontiers in geotechnical modelling and numerical analysis. It represents a powerful tool for exploring large deformation behaviours of soils, structures and fluids, and their interactions, such as internal and external erosion, and post-liquefaction analysis; for instance the post-failure liquid-like behaviours of landslides, penetration problems such as CPT and pile installation, and scouring problems related to underwater pipelines. In the recent years, MPM has developed enough for its practical use in industry, apart from the increasing interest in the academic world.
This book gathers the most recent scientific research on the geological, geotechnical and geophysical aspects of slope failure in sensitive clays. Gathering contributions by international experts, it focuses on understanding the complete and practical spectrum of challenges presented by landslides in such complex materials. Based on sound and validated research results, the book also presents several recommendations that could be implemented in the guidelines or code-of-practice. These recommendations cover topics including the characterization and behavior of sensitive clays; the pre-failure, failure and post-failure stages of sensitive clays; mapping and identification methods; climate change; hazard assessment; and risk management. Sensitive clays are known for their potential for causing large landslides, which pose a serious risk to human lives, infrastructure, and surrounding ecosystems within their reach. This has been demonstrated by the recent catastrophic landslides in e.g. Sørum (2016), Skjeggestad (2015), Statland (2014), Byneset (2012), St-Jude (2010), Lyngen (2010) and Kattmarka (2009). The 2015 collapse of the Skjeggestad Bridge in Norway – which was due to a landslide in sensitive clay – alone costs millions of dollars in repairs. Recently, efforts are being made to increase society’s ability to cope with such landslide hazards. Geoscientists are now expected to provide input to the agencies responsible for landslide-risk preparedness. In other words, geoscientists’ role is not only to act as technologists to establish new theories, but also to go the extra mile to implement them in practice, so as to find meaningful solutions to geotechnical problems.
Written by experts, Digital Terrain Modeling: Principles and Methodology provides comprehensive coverage of recent developments in the field. The topics include terrain analysis, sampling strategy, acquisition methodology, surface modeling principles, triangulation algorithms, interpolation techniques, on-line and off-line quality control in data a
A comprehensive, one-stop synthesis of landslide science, for researchers and graduate students in geomorphology, engineering geology and geophysics.
This book presents a one-stop reference to the empirical correlations used extensively in geotechnical engineering. Empirical correlations play a key role in geotechnical engineering designs and analysis. Laboratory and in situ testing of soils can add significant cost to a civil engineering project. By using appropriate empirical correlations, it is possible to derive many design parameters, thus limiting our reliance on these soil tests. The authors have decades of experience in geotechnical engineering, as professional engineers or researchers. The objective of this book is to present a critical evaluation of a wide range of empirical correlations reported in the literature, along with typical values of soil parameters, in the light of their experience and knowledge. This book will be a one-stop-shop for the practising professionals, geotechnical researchers and academics looking for specific correlations for estimating certain geotechnical parameters. The empirical correlations in the forms of equations and charts and typical values are collated from extensive literature review, and from the authors' database.
Predictive Soil Mapping (PSM) is based on applying statistical and/or machine learning techniques to fit models for the purpose of producing spatial and/or spatiotemporal predictions of soil variables i.e. maps of soil properties and classes at different resolutions. It is a multidisciplinary field combining statistics, data science, soil science, physical geography, remote sensing, geoinformation science and a number of other sciences. Predictive Soil Mapping with R is about understanding the main concepts behind soil mapping, mastering R packages that can be used to produce high quality soil maps, and about optimizing all processes involved so that also the production costs can be reduced. The online version of the book is available at: https: //envirometrix.github.io/PredictiveSoilMapping/ Pull requests and general comments are welcome. These materials are based on technical tutorials initially developed by the ISRIC's Global Soil Information Facilities (GSIF) development team over the period 2014?2017
The purpose of this manual is to provide clear and helpful information for maintaining gravel roads. Very little technical help is available to small agencies that are responsible for managing these roads. Gravel road maintenance has traditionally been "more of an art than a science" and very few formal standards exist. This manual contains guidelines to help answer the questions that arise concerning gravel road maintenance such as: What is enough surface crown? What is too much? What causes corrugation? The information is as nontechnical as possible without sacrificing clear guidelines and instructions on how to do the job right.
Landslides in sensitive clays represent a major hazard in the northern countries of the world such as Canada, Finland, Norway, Russia, Sweden and in the US state of Alaska. Past and recent examples of catastrophic landslides at e.g. Saint-Jean-Vianney in 1971, Rissa in 1979, Finneidfjord in 1996 and Kattmarka in 2009 have illustrated the great mobility of the remolded sensitive clays and their hazardous retrogressive potential. These events call for a better understanding of landslide in sensitive clay terrain to assist authorities with state-of-the-art hazard assessment methods, risk management schemes, mitigation measures and planning. During the last decades the elevated awareness regarding slope movement in sensitive clays has led to major advances in mapping techniques and development of highly sophisticated geotechnical and geophysical investigation tools. Great advances in numerical techniques dealing with progressive failure and landslide kinematic have also lead to increase understanding and predictability of landslides in sensitive clays and their consequences. This volume consists of the latest scientific research by international experts dealing with geological, geotechnical and geophysical aspects of slope failure in sensitive clays and focuses on understanding the full spectrum of challenges presented by landslides in such brittle materials.