Download Free Prediction Of Stock Market Index Movements With Machine Learning Book in PDF and EPUB Free Download. You can read online Prediction Of Stock Market Index Movements With Machine Learning and write the review.

This book is well-researched by the author, in which he has shared the experience and knowledge of some very much experienced and renowned entities from stock market. We want that everybody should have the knowledge regarding the different aspects of stock market, which would encourage people to invest and earn without any fear. This book is just a step forward toward the knowledge of market.
Data Mining Algorithms is a practical, technically-oriented guide to data mining algorithms that covers the most important algorithms for building classification, regression, and clustering models, as well as techniques used for attribute selection and transformation, model quality evaluation, and creating model ensembles. The author presents many of the important topics and methodologies widely used in data mining, whilst demonstrating the internal operation and usage of data mining algorithms using examples in R.
Data is a common ground, a starting point for each ICT system. Data needs processing, use of different technologies and state-of-the-art methods in order to obtain new knowledge, to develop new useful applications that not only ease, but also increase the quality of life. These applications use the exploration of Big Data, High throughput data, Data Warehouse, Data Mining, Bioinformatics, Robotics, with data coming from social media, sensors, scientific applications, surveillance, video and image archives, internet texts and documents, internet search indexing, medical records, business transactions, web logs, etc. Information and communication technologies have become the asset in everyday life enabling increased level of communication, processing and information exchange. This book offers a collection of selected papers presented at the Sixth International Conference on ICT Innovations held in September 2014, in Ohrid, Macedonia, with main topic World of data. The conference gathered academics, professionals and practitioners in developing solutions and systems in the industrial and business arena, especially innovative commercial implementations, novel applications of technology, and experience in applying recent ICT research advances to practical solutions.
The book titled "Prediction of Stock Market Index Movements with Machine Learning" focuses on the performance of machine learning methods in forecasting the future movements of stock market indexes and identifying the most advantageous methods that can be used across different stock exchanges. In this context, applications have been conducted on both developed and emerging market stock exchanges. The stock market indexes of developed countries such as NYSE 100, NIKKEI 225, FTSE 100, CAC 40, DAX 30, FTSE MIB, TSX; and the stock market indexes of emerging countries such as SSE, BOVESPA, RTS, NIFTY 50, IDX, IPC, and BIST 100 were selected. The movement directions of these stock market indexes were predicted using decision trees, random forests, k-nearest neighbors, naive Bayes, logistic regression, support vector machines, and artificial neural networks methods. Daily dataset from 01.01.2012 to 31.12.2021, along with technical indicators, were used as input data for analysis. According to the results obtained, it was determined that artificial neural networks were the most effective method during the examined period. Alongside artificial neural networks, logistic regression and support vector machines methods were found to predict the movement direction of all indexes with an accuracy of over 70%. Additionally, it was noted that while artificial neural networks were identified as the best method, they did not necessarily achieve the highest accuracy for all indexes. In this context, it was established that the performance of the examined methods varied among countries and indexes but did not differ based on the development levels of the countries. As a conclusion, artificial neural networks, logistic regression, and support vector machines methods are recommended as the most advantageous approaches for predicting stock market index movements.
The aim of this book is to discuss the fundamental ideas which lie behind the statistical theory of learning and generalization. It considers learning as a general problem of function estimation based on empirical data. Omitting proofs and technical details, the author concentrates on discussing the main results of learning theory and their connections to fundamental problems in statistics. This second edition contains three new chapters devoted to further development of the learning theory and SVM techniques. Written in a readable and concise style, the book is intended for statisticians, mathematicians, physicists, and computer scientists.
This book constitutes thoroughly refereed post-conference proceedings of the International Applied Soft Computing and Communication Networks (ACN 2020) held in VIT, Chennai, India, during October 14–17, 2020. The research papers presented were carefully reviewed and selected from several initial submissions. The book is directed to the researchers and scientists engaged in various fields of intelligent systems.
This book presents the proceedings of the 11th Conference on Theory and Applications of Soft Computing, Computing with Words and Perceptions and Artificial Intelligence, ICSCCW-2021, held in Antalya, Turkey, on August 23–24, 2021. The general scope of the book covers uncertain computation, decision making under imperfect information, neuro-fuzzy approaches, natural language processing, and other areas. The topics of the papers include theory and application of soft computing, computing with words, image processing with soft computing, intelligent control, machine learning, fuzzy logic in data mining, soft computing in business, economics, engineering, material sciences, biomedical engineering, and health care. This book is a useful guide for academics, practitioners, and graduates in fields of soft computing and computing with words. It allows for increasing of interest in development and applying of these paradigms in various real-life fields.
This textbook provides a thorough introduction to the field of learning from experimental data and soft computing. Support vector machines (SVM) and neural networks (NN) are the mathematical structures, or models, that underlie learning, while fuzzy logic systems (FLS) enable us to embed structured human knowledge into workable algorithms. The book assumes that it is not only useful, but necessary, to treat SVM, NN, and FLS as parts of a connected whole. Throughout, the theory and algorithms are illustrated by practical examples, as well as by problem sets and simulated experiments. This approach enables the reader to develop SVM, NN, and FLS in addition to understanding them. The book also presents three case studies: on NN-based control, financial time series analysis, and computer graphics. A solutions manual and all of the MATLAB programs needed for the simulated experiments are available.
This book gathers selected high-impact articles from the 1st International Conference on Data Science, Machine Learning & Applications 2019. It highlights the latest developments in the areas of Artificial Intelligence, Machine Learning, Soft Computing, Human–Computer Interaction and various data science & machine learning applications. It brings together scientists and researchers from different universities and industries around the world to showcase a broad range of perspectives, practices and technical expertise.