Download Free Predicting The Impacts Of Urbanization On Basin Scale Runoff And Infiltration In Semi Arid Regions Book in PDF and EPUB Free Download. You can read online Predicting The Impacts Of Urbanization On Basin Scale Runoff And Infiltration In Semi Arid Regions and write the review.

Predicting water runoff in ungauged water catchment areas is vital to practical applications such as the design of drainage infrastructure and flooding defences, runoff forecasting, and for catchment management tasks such as water allocation and climate impact analysis. This full colour book offers an impressive synthesis of decades of international research, forming a holistic approach to catchment hydrology and providing a one-stop resource for hydrologists in both developed and developing countries. Topics include data for runoff regionalisation, the prediction of runoff hydrographs, flow duration curves, flow paths and residence times, annual and seasonal runoff, and floods. Illustrated with many case studies and including a final chapter on recommendations for researchers and practitioners, this book is written by expert authors involved in the prestigious IAHS PUB initiative. It is a key resource for academic researchers and professionals in the fields of hydrology, hydrogeology, ecology, geography, soil science, and environmental and civil engineering.
"Predicting water runoff in ungauged water catchment areas is vital to practical applications such as the design of drainage infrastructure and flooding defences, runoff forecasting, and for catchment management tasks such as water allocation and climate impact analysis. This important new book synthesises decades of international research, forming a holistic approach to catchment hydrology and providing a one-stop resource for hydrologists in both developed and developing countries. Topics include data for runoff regionalisation, the prediction of runoff hydrographs, flow duration curves, flow paths and residence times, annual and seasonal runoff, and floods. Illustrated with many case studies and including a final chapter on recommendations for researchers and practitioners, this book is written by expert authors involved in the prestigious IAHS PUB initiative. It is a key resource for academic researchers and professionals in the fields of hydrology, hydrogeology, ecology, geography, soil science, and environmental and civil engineering"--
Arid and semi-arid regions can be defined as environments in which water is the limit ing factor for bio-systems. This means that survival of life in these regions involves a constant struggle to obtain this limited commodity and draw the maximum benefit out of it. However, despite the difficulties for plants, animals, and man to live in, these regions, they are being utilized more and more because of the pressure of world population growth. This is expressed in the expansion of agricultural activities in desert lands as well as by the formation and rapid growth of urban and industrial centers. These trends result in a growing demand for water on the one hand, and the disposal of vast amounts of waste water, as well as other types of refuse, on the other. Meeting the first demand, namely, supplying water to the agricultural communities and urban centers, involves, in many instances, the over-exploitation and misuse of nat ural water resources. The surplus of waste water, sometimes highly loaded with toxic compounds, is likely to cause irreversible damage to the environment. The geoscientists and engineers face a challenge on two conflicting fronts. Success on one front, namely, in answering the full demand for water, may lead to an increase in the pollution of the environment by waste water.
"Predicting water runoff in ungauged water catchment areas is vital to practical applications such as the design of drainage infrastructure and flooding defences, runoff forecasting, and for catchment management tasks such as water allocation and climate impact analysis. This important new book synthesises decades of international research, forming a holistic approach to catchment hydrology and providing a one-stop resource for hydrologists in both developed and developing countries. Topics include data for runoff regionalisation, the prediction of runoff hydrographs, flow duration curves, flow paths and residence times, annual and seasonal runoff, and floods. Illustrated with many case studies and including a final chapter on recommendations for researchers and practitioners, this book is written by expert authors involved in the prestigious IAHS PUB initiative. It is a key resource for academic researchers and professionals in the fields of hydrology, hydrogeology, ecology, geography, soil science, and environmental and civil engineering"--
In response to the increasing urbanization, advances in the science of urban hydrology have improved urban water system management, creating more livable cities in which public safety and health, as well as the environment, are protected. The ultimate goal of urban water management is to mimic the hydrological cycle prior to urbanization. On top of urbanization, climate change, which has been demonstrated to alter the hydrological cycle in all respects, has introduced additional challenges to managing urban water systems. To mitigate and adapt to urbanization under a changing climate, understanding key hydrologic components should expand to include complex issues brought forth by climate change. Thus, effective and efficient measures can be formulated. This Special Issue of Water presents a variety of research papers that span a range of spatial and temporal scales of relevance in different societies’ efforts in adapting to the eminent changes in climate and the continuous changes in the landscape. From mitigating water quality in permeable pavements and bioretention swales to understanding changes in groundwater recharge in large regions, this Special Issue examines the state-of-the-art in sustainable urban design for adaptation and resiliency.
Changes in land use and land cover can have many drivers, including population growth, urbanization, agriculture, demand for food, evolution of socio-economic structure, policy regulations, and climate variability. The impacts of these changes on water resources range from changes in water availability (due to changes in losses of water to evapotranspiration and recharge) to degradation of water quality (increased erosion, salinity, chemical loadings, and pathogens). The impacts are manifested through complex hydro-bio-geo-climate characteristics, which underscore the need for integrated scientific approaches to understand the impacts of landscape change on water resources. Several techniques, such as field studies, long-term monitoring, remote sensing technologies, and advanced modeling studies, have contributed to better understanding the modes and mechanisms by which landscape changes impact water resources. Such research studies can help unlock the complex interconnected influences of landscape on water resources in terms of quantity and quality at multiple spatial and temporal scales. In this Special Issue, we published a set of eight peer-reviewed articles elaborating on some of the specific topics of landscape changes and associated impacts on water resources.