Download Free Predicting Semiconductor Business Trends After Moores Law Book in PDF and EPUB Free Download. You can read online Predicting Semiconductor Business Trends After Moores Law and write the review.

The semiconductor industry exhibited life cycles that were longer than the disk drive industry but had the same free market characteristics. Over time this unfettered competition followed trends in a worldwide market that could be quantified and used to predict the future. Over the past forty years or more, I've collected data and made presentations showing how the actual economics and technology of the semiconductor industry can be used to predict its future direction and magnitude. This book is built upon excerpts of presentations made during the last thirty years that analyze the business and technology of the semiconductor industry. In most cases, the figures in the book are copies of the original slides as they were presented during one or more of those presentations. In general, they show how predictable the semiconductor industry has been. They should also provide insight into the future of the industry.
Hosted by Harvard University's Kennedy School of Government, this symposium brought together leading technologists and economists to review technical challenges facing the semiconductor industry, the industry's business cycle, the interconnections between the two, and the implications of growth in semiconductors for the economy as a whole. This volume includes a summary of the symposium proceedings and three major research papers. Topics reviewed encompass the industry technology roadmap, challenges to be overcome to maintain the trajectory of Moore's Law, the drivers of the continued growth in productivity in the U.S. economy, and economic models for gaining a better understanding of this leading U.S. industry.
The world of smart shoes, appliances, and phones is already here, but the practice of user experience (UX) design for ubiquitous computing is still relatively new. Design companies like IDEO and frogdesign are regularly asked to design products that unify software interaction, device design and service design -- which are all the key components of ubiquitous computing UX -- and practicing designers need a way to tackle practical challenges of design. Theory is not enough for them -- luckily the industry is now mature enough to have tried and tested best practices and case studies from the field. Smart Things presents a problem-solving approach to addressing designers' needs and concentrates on process, rather than technological detail, to keep from being quickly outdated. It pays close attention to the capabilities and limitations of the medium in question and discusses the tradeoffs and challenges of design in a commercial environment. Divided into two sections, frameworks and techniques, the book discusses broad design methods and case studies that reflect key aspects of these approaches. The book then presents a set of techniques highly valuable to a practicing designer. It is intentionally not a comprehensive tutorial of user-centered design'as that is covered in many other books'but it is a handful of techniques useful when designing ubiquitous computing user experiences. In short, Smart Things gives its readers both the "why" of this kind of design and the "how," in well-defined chunks. - Tackles design of products in the post-Web world where computers no longer have to be monolithic, expensive general-purpose devices - Features broad frameworks and processes, practical advice to help approach specifics, and techniques for the unique design challenges - Presents case studies that describe, in detail, how others have solved problems, managed trade-offs, and met successes
Enthusiasts look forward to a time when tiny machines reassemble matter and process information but is their vision realistic? 'Soft Machines' explains why the nanoworld is so different to the macro-world that we are all familar with and shows how it has more in common with biology than conventional engineering.
The United States, Taiwan, and China are bound within a "silicon triangle." Semiconductors link our geopolitics, our ongoing economic prosperity, and our technological competitiveness. This book draws on the deliberations of a multidisciplinary Hoover Institution–Asia Society working group of technologists, economists, military strategists, industry players, and regional policy experts to contemplate the dynamic global supply chain in semiconductors—one in which US industry faces growing vulnerabilities, China aggressively promotes home-grown semiconductor mastery, and Taiwan finds itself with a crucial monopoly on high-end logic chips sought by buyers globally. Silicon Triangle seeks to present a balanced view of how policies of the United States and its partners around semiconductors can increase the resilience of shared supply chains—and contribute to deterring conflict in the Taiwan Strait.
This book provides a methodological understanding of the theoretical and technical limitations to the longevity of Moore’s law. The book presents research on factors that have significant impact on the future of Moore’s law and those factors believed to sustain the trend of the last five decades. Research findings show that boundaries of Moore’s law primarily include physical restrictions of scaling electronic components to levels beyond that of ordinary manufacturing principles and approaching the bounds of physics. The research presented in this book provides essential background and knowledge to grasp the following principles: Traditional and modern photolithography, the primary limiting factor of Moore’s law Innovations in semiconductor manufacturing that makes current generation CMOS processing possible Multi-disciplinary technologies that could drive Moore's law forward significantly Design principles for microelectronic circuits and components that take advantage of technology miniaturization The semiconductor industry economic market trends and technical driving factors The complexity and cost associated with technology scaling have compelled researchers in the disciplines of engineering and physics to optimize previous generation nodes to improve system-on-chip performance. This is especially relevant to participate in the increased attractiveness of the Internet of Things (IoT). This book additionally provides scholarly and practical examples of principles in microelectronic circuit design and layout to mitigate technology limits of previous generation nodes. Readers are encouraged to intellectually apply the knowledge derived from this book to further research and innovation in prolonging Moore’s law and associated principles.
Supply chains for electronic products are primarily driven by consumer electronics. Every year new mobile phones, computers and gaming consoles are introduced, driving the continued applicability of Moore's law. The semiconductor manufacturing industry is highly dynamic and releases new, better and cheaper products day by day. But what happens to long-field life products like airplanes or ships, which need the same components for decades? How do electronic and also non-electronic systems that need to be manufactured and supported of decades manage to continue operation using parts that were available for a few years at most? This book attempts to answer these questions. This is the only book on the market that covers obsolescence forecasting methodologies, including forecasting tactics for hardware and software that enable cost-effective proactive product life-cycle management. This book describes how to implement a comprehensive obsolescence management system within diverse companies. Strategies to the Prediction, Mitigation and Management of Product Obsolescence is a must-have work for all professionals in product/project management, sustainment engineering and purchasing.
Our world today -- from the phone in your pocket to the car that you drive, the allure of social media to the strategy of the Pentagon -- has been shaped irrevocably by the technology of silicon transistors. Year after year, for half a century, these tiny switches have enabled ever-more startling capabilities. Their incredible proliferation has altered the course of human history as dramatically as any political or social revolution. At the heart of it all has been one quiet Californian: Gordon Moore. At Fairchild Semiconductor, his seminal Silicon Valley startup, Moore -- a young chemist turned electronics entrepreneur -- had the defining insight: silicon transistors, and microchips made of them, could make electronics profoundly cheap and immensely powerful. Microchips could double in power, then redouble again in clockwork fashion. History has borne out this insight, which we now call "Moore's Law", and Moore himself, having recognized it, worked endlessly to realize his vision. With Moore's technological leadership at Fairchild and then at his second start-up, the Intel Corporation, the law has held for fifty years. The result is profound: from the days of enormous, clunky computers of limited capability to our new era, in which computers are placed everywhere from inside of our bodies to the surface of Mars. Moore led nothing short of a revolution. In Moore's Law, Arnold Thackray, David C. Brock, and Rachel Jones give the authoritative account of Gordon Moore's life and his role in the development both of Silicon Valley and the transformative technologies developed there. Told by a team of writers with unparalleled access to Moore, his family, and his contemporaries, this is the human story of man and a career that have had almost superhuman effects. The history of twentieth-century technology is littered with overblown "revolutions." Moore's Law is essential reading for anyone seeking to learn what a real revolution looks like.
This is the book version of a special issue of the International Journal of High Speed Electronics and Systems, reviewing recent work in the field of compound semiconductor integrated circuits. There are fourteen invited papers covering a wide range of applications, frequencies and materials. These papers deal with digital, analog, microwave and millimeter-wave technologies, devices and integrated circuits for wireline fiber-optic lightwave transmissions, and wireless radio-frequency microwave and millimeter-wave communications. In each case, the market is young and experiencing rapid growth for both commercial and millitary applications. Many new semiconductor technologies compete for these new markets, leading to an alphabet soup of semiconductor materials described in these papers. Contents: Present and Future of High-Speed Compound Semiconductor IC's (T Otsuji); Transforming MMIC (E J Martinez); Distributed Amplifier for Fiber-Optic Communication Systems (H Shigematsu et al.); Microwave GaN-Based Power Transistors on Large-Scale Silicon Wafers (S Manohar et al.); Radiation Effects in High Speed III-V Integrated Circuits (T R Weatherford); Radiation Effects in III-V Semiconductor Electronics (B D Weaver et al.); Reliability and Radiation Hardness of Compound Semiconductors (S A Kayali & A H Johnston); and other papers. Readership: Engineers, scientists and graduate students working on high speed electronics and systems, and in the area of compound semiconductor integrated circuits.