Download Free Precision Measurements Of Qcd Radiation In Top Antitop And Z Jets Final States At Atlas Book in PDF and EPUB Free Download. You can read online Precision Measurements Of Qcd Radiation In Top Antitop And Z Jets Final States At Atlas and write the review.

This thesis contains new research in both experimental and theoretical particle physics, making important contributions in each. Two analyses of collision data from the ATLAS experiment at the LHC are presented, as well as two phenomenological studies of heavy coloured resonances that could be produced at the LHC. The first data analysis was the measurement of top quark-antiquark production with a veto on additional jet activity. As the first detector-corrected measurement of jet activity in top-antitop events it played an important role in constraining the theoretical modelling, and ultimately reduced these uncertainties for ATLAS's other top-quark measurements by a factor of two. The second data analysis was the measurement of Z+2jet production and the observation of the electroweak vector boson fusion (VBF) component. As the first observation of VBF at a hadron collider, this measurement demonstrated new techniques to reliably extract VBF processes and paved the way for future VBF Higgs measurements. The first phenomenological study developed a new technique for identifying the colour of heavy resonances produced in proton-proton collisions. As a by-product of this study an unexpected and previously unnoticed correlation was discovered between the probability of correctly identifying a high-energy top and the colour structure of the event it was produced in. The second phenomenological study explored this relationship in more detail, and could have important consequences for the identification of new particles that decay to top quarks.
This thesis contains new research in both experimental and theoretical particle physics, making important contributions in each. Two analyses of collision data from the ATLAS experiment at the LHC are presented, as well as two phenomenological studies of heavy coloured resonances that could be produced at the LHC. The first data analysis was the measurement of top quark-antiquark production with a veto on additional jet activity. As the first detector-corrected measurement of jet activity in top-antitop events it played an important role in constraining the theoretical modelling, and ultimately reduced these uncertainties for ATLAS's other top-quark measurements by a factor of two. The second data analysis was the measurement of Z+2jet production and the observation of the electroweak vector boson fusion (VBF) component. As the first observation of VBF at a hadron collider, this measurement demonstrated new techniques to reliably extract VBF processes and paved the way for future VBF Higgs measurements. The first phenomenological study developed a new technique for identifying the colour of heavy resonances produced in proton-proton collisions. As a by-product of this study an unexpected and previously unnoticed correlation was discovered between the probability of correctly identifying a high-energy top and the colour structure of the event it was produced in. The second phenomenological study explored this relationship in more detail, and could have important consequences for the identification of new particles that decay to top quarks.
This comprehensive volume summarizes and structures the multitude of results obtained at the LHC in its first running period and draws the grand picture of today’s physics at a hadron collider. Topics covered are Standard Model measurements, Higgs and top-quark physics, flavour physics, heavy-ion physics, and searches for supersymmetry and other extensions of the Standard Model. Emphasis is placed on overview and presentation of the lessons learned. Chapters on detectors and the LHC machine and a thorough outlook into the future complement the book. The individual chapters are written by teams of expert authors working at the forefront of LHC research.
Many high-energy collider experiments (including the current Large Hadron Collider at CERN) involve the collision of hadrons. Hadrons are composite particles consisting of partons (quarks and gluons), and this means that in any hadron-hadron collision there will typically be multiple collisions of the constituents — i.e. multiple parton interactions (MPI). Understanding the nature of the MPI is important in terms of searching for new physics in the products of the scatters, and also in its own right to gain a greater understanding of hadron structure. This book aims at providing a pedagogical introduction and a comprehensive review of different research lines linked by an involvement of MPI phenomena. It is written by pioneers as well as young leading scientists, and reviews both experimental findings and theoretical developments, discussing also the remaining open issues.
This will be a required acquisition text for academic libraries. More than ten years after its discovery, still relatively little is known about the top quark, the heaviest known elementary particle. This extensive survey summarizes and reviews top-quark physics based on the precision measurements at the Fermilab Tevatron Collider, as well as examining in detail the sensitivity of these experiments to new physics. Finally, the author provides an overview of top quark physics at the Large Hadron Collider.
A modern introduction to quantum field theory for graduates, providing intuitive, physical explanations supported by real-world applications and homework problems.
In an epoch when particle physics is awaiting a major step forward, the Large Hydron Collider (LHC) at CERN, Geneva will soon be operational. It will collide a beam of high energy protons with another similar beam circulation in the same 27 km tunnel but in the opposite direction, resulting in the production of many elementary particles some never created in the laboratory before. It is widely expected that the LHC will discover the Higgs boson, the particle which supposedly lends masses to all other fundamental particles. In addition, the question as to whether there is some new law of physics at such high energy is likely to be answered through this experiment. The present volume contains a collection of articles written by international experts, both theoreticians and experimentalists, from India and abroad, which aims to acquaint a non-specialist with some basic issues related to the LHC. At the same time, it is expected to be a useful, rudimentary companion of introductory exposition and technical expertise alike, and it is hoped to become unique in its kind. The fact that there is substantial Indian involvement in the entire LHC endeavour, at all levels including fabrication, physics analysis procedures as well as theoretical studies, is also amply brought out in the collection.
Giving an accurate account of the concepts, theorems and their justification, this book is a systematic treatment of perturbative QCD. It relates the concepts to experimental data, giving strong motivations for the methods. Ideal for graduate students starting their work in high-energy physics, it will also interest experienced researchers.
This concise primer reviews the latest developments in the field of jets. Jets are collinear sprays of hadrons produced in very high-energy collisions, e.g. at the LHC or at a future hadron collider. They are essential to and ubiquitous in experimental analyses, making their study crucial. At present LHC energies and beyond, massive particles around the electroweak scale are frequently produced with transverse momenta that are much larger than their mass, i.e., boosted. The decay products of such boosted massive objects tend to occupy only a relatively small and confined area of the detector and are observed as a single jet. Jets hence arise from many different sources and it is important to be able to distinguish the rare events with boosted resonances from the large backgrounds originating from Quantum Chromodynamics (QCD). This requires familiarity with the internal properties of jets, such as their different radiation patterns, a field broadly known as jet substructure. This set of notes begins by providing a phenomenological motivation, explaining why the study of jets and their substructure is of particular importance for the current and future program of the LHC, followed by a brief but insightful introduction to QCD and to hadron-collider phenomenology. The next section introduces jets as complex objects constructed from a sequential recombination algorithm. In this context some experimental aspects are also reviewed. Since jet substructure calculations are multi-scale problems that call for all-order treatments (resummations), the bases of such calculations are discussed for simple jet quantities. With these QCD and jet physics ingredients in hand, readers can then dig into jet substructure itself. Accordingly, these notes first highlight the main concepts behind substructure techniques and introduce a list of the main jet substructure tools that have been used over the past decade. Analytic calculations are then provided for several families of tools, the goal being to identify their key characteristics. In closing, the book provides an overview of LHC searches and measurements where jet substructure techniques are used, reviews the main take-home messages, and outlines future perspectives.