Download Free Precision Agriculture Modelling Book in PDF and EPUB Free Download. You can read online Precision Agriculture Modelling and write the review.

This book presents cases from different countries with a main focus on the perspectives of using precision farming in Europe. Divided into 12 chapters it addresses some of the most recent developments and aspects of precision farming. The intention of this book is to provide an overview of some of the most promising technologies with precision agriculture from an economic point of view. Each chapter has been put together so that it can be read individually should the reader wish to focus on one particular topic. Precision Farming as a farm technology benefits from large-scale advantages due to relatively high investment costs and is primarily adopted on farms with medium to large field areas.
Crop models and remote sensing techniques have been combined and applied in agriculture and crop estimation on local and regional scales, or worldwide, based on the simultaneous development of crop models and remote sensing. The literature shows that many new remote sensing sensors and valuable methods have been developed for the retrieval of canopy state variables and soil properties from remote sensing data for assimilating the retrieved variables into crop models. At the same time, remote sensing has been used in a staggering number of applications for agriculture. This book sets the context for remote sensing and modelling for agricultural systems as a mean to minimize the environmental impact, while increasing production and productivity. The eighteen papers published in this Special Issue, although not representative of all the work carried out in the field of Remote Sensing for agriculture and crop modeling, provide insight into the diversity and the complexity of developments of RS applications in agriculture. Five thematic focuses have emerged from the published papers: yield estimation, land cover mapping, soil nutrient balance, time-specific management zone delineation and the use of UAV as agricultural aerial sprayers. All contributions exploited the use of remote sensing data from different platforms (UAV, Sentinel, Landsat, QuickBird, CBERS, MODIS, WorldView), their assimilation into crop models (DSSAT, AQUACROP, EPIC, DELPHI) or on the synergy of Remote Sensing and modeling, applied to cardamom, wheat, tomato, sorghum, rice, sugarcane and olive. The intended audience is researchers and postgraduate students, as well as those outside academia in policy and practice.
Sensing Approaches for Precision Agriculture aims to bring together the ‘state of the art’ of the most popular sensing techniques and the current state of research on the application of sensors in Precision Agriculture (PA). Sensing is of great value in PA because it provides cheap and immediate data for management. This book gives a broad overview of sensing in PA and a coherent introduction for new professionals and research scientists. Readers are introduced to the potential applications of a range of different sensors, how they should be used properly and their limitations for use in PA. Chapters on specific topics and case studies provide depth and enable implementation of the methods by users. A general introduction about sensing techniques in PA is followed by Chapters 2–9 on the most important specific techniques in sensing and Chapters 10–13 include mini-case studies, each showing cutting-edge applications for different sensing methods. Finally, there is an Epilogue on how we expect sensors and analysis to develop.
Precision agriculture is a reality in agriculture and is playing a key role as the industry comes to terms with the environment, market forces, quality requirements, traceability, vehicle guidance and crop management. These proceedings contain reviewed papers presented at the 12th European Conference on Precision Agriculture. The papers reflect the wide range of disciplines that impinge on precision agriculture - technology, crop science, soil science, agronomy, information technology, decision support, remote sensing and others.
This book describes how models are used to monitor crops and soils in precision agriculture, and how they are used to support farmers’ decisions. The introductory section starts with an overview of precision agriculture from the early days of yield monitoring in the 1980s to the present, with a focus on the role of models. The section continues with descriptions of the different kinds of models and the opportunities for their application in precision agriculture. The section concludes with a chapter on socio-economic drivers and obstacles to the adoption of precision agriculture technologies. The middle section of the book explores the state-of-the-art in modeling for precision agriculture. Individual chapters focus on the major processes in precision agriculture: water use, nitrogen and other amendments, as well as weeds, pests and diseases. The final section contains a series of short chapters that each describe a commercial, model-based service that is currently available to farmers. The book aims to provide useful information to graduate-level professionals that want to broaden their knowledge of precision agriculture; to scientists who want to learn about using academic knowledge in practical farming; and to farmers, farm consultants and extension workers who want to increase their understanding of the science behind some of the commercial software available to the farming community.
Remote Sensing in Precision Agriculture: Transforming Scientific Advancement into Innovation compiles the latest applications of remote sensing in agriculture using spaceborne, airborne and drones' geospatial data. The book presents case studies, new algorithms and the latest methods surrounding crop sown area estimation, determining crop health status, assessment of vegetation dynamics, crop diseases identification, crop yield estimation, soil properties, drone image analysis for crop damage assessment, and other issues in precision agriculture. This book is ideal for those seeking to explore and implement remote sensing in an effective and efficient manner with its compendium of scientifically and technologically sound information. - Presents a well-integrated collection of chapters, with quality, consistency and continuity - Provides the latest RS techniques in Precision Agriculture that are addressed by leading experts - Includes detailed, yet geographically global case studies that can be easily understood, reproduced or implemented - Covers geospatial data, with codes available through shared links
Most books covering the use of computer models in agricultural management systems target only one or two types of models. There are few texts available that cover the subject of systems modeling comprehensively and that deal with various approaches, applications, evaluations, and uses for technology transfer. Agricultural System Models in Field Res
This book provides a review of precision agriculture technology development, followed by a presentation of the state-of-the-art and future requirements of precision agriculture technology. It presents different styles of precision agriculture technologies suitable for large scale mechanized farming; highly automated community-based mechanized production; and fully mechanized farming practices commonly seen in emerging economic regions. The book emphasizes the introduction of core technical features of sensing, data processing and interpretation technologies, crop modeling and production control theory, intelligent machinery and field robots for precision agriculture production.
Precision agriculture integrates new technologies with the agronomic experience to intelligently manage the high spatial variability of all agricultural variables and the time scales at which these variables change. The right application of this approach increases the size and quality of the agricultural production; saves resources; improves environmental quality; helps to achieve self-sufficiency, food security, and agricultural sustainability; increases exports; and more. Precision Agriculture Technologies for Food Security and Sustainability is an essential reference source that compiles a comprehensive, multidisciplinary review of current research in the field of precision agriculture. It also discusses cutting-edge tools and models that can help facilitate and improve the systems implementation. Featuring coverage of a wide range of topics including agronomy, public policy, and internet of things, this book is ideally designed for agriculturalists, government officials, economists, environmentalists, academicians, researchers, students, and engineers in the fields of electronics, ICT, and agriculture.
The aim of this book is to bring together a series of contributions from experts in the field to cover the major aspects of the application of geostatistics in precision agriculture. The focus will not be on theory, although there is a need for some theory to set the methods in their appropriate context. The subject areas identified and the authors selected have applied the methods in a precision agriculture framework. The papers will reflect the wide range of methods available and how they can be applied practically in the context of precision agriculture. This book is likely to have more impact as it becomes increasingly possible to obtain data cheaply and more farmers use onboard digital maps of soil and crops to manage their land. It might also stimulate more software development for geostatistics in PA.