Download Free Practical Mathematics For Technical Students Book in PDF and EPUB Free Download. You can read online Practical Mathematics For Technical Students and write the review.

"Simplifies the mathematics that technologists and students are likely to encounter in the practice of clinical nuclear medicine technology"--Provided by publisher.
This book is the first of its kind, as it includes both mathematics content and pedagogy. It is a professional instructional manual on how mathematical problem solving curriculum can be implemented in the classrooms. The book develops from the theoretical work of Polya and Schoenfeld, and explicates how these can be translated to the actual implementation in schools. It represents the work of a group of researchers from the Singapore National Institute of Education, after experimenting with it in the Singapore school classrooms. This book includes a set of scheme of work, lesson plans and a choice of mathematics problems that teachers can actually use in teaching problem solving. Certain pedagogical considerations are developed and suggested in this book. In addition, the book includes an assessment framework on how mathematical problem solving can be assessed.
This book covers a variety of topics in mathematics as they relate to industrial technologies including manufacturing, electricity/electronics, graphics, communication, transportation, industrial management, materials and related science principles. Organized by topics, the main objective is to develop strong, logical problem-solving skills. ..A brief description of each math principle is presented with step-by-step examples. The explanations are designed to emphasize the correct use and application of math principles. Graphs, drawings and charts relating to the applications reinforce the use of the skills developed. ALSO AVAILABLE INSTRUCTOR SUPPLEMENTS CALL CUSTOMER SUPPORT TO ORDER Instructor's Guide, ISBN: 0-8273-6975-1
The wide availability of digital educational resources for mathematics teaching and learning is indisputable, with some notable genres of technologies having evolved, such as graphing calculators, dynamic graphing, dynamic geometry and data visualization tools. But what does this mean for teachers of mathematics, and how do their roles evolve within this digital landscape? This essential book offers an international perspective to help bridge theory and practice, including coverage of networking theories, curriculum design, task implementation, online resources and assessment. Mathematics Education in the Digital Age details the impacts this digital age has, and will continue to have, on the parallel aspects of learning and teaching mathematics within formal education systems and settings. Written by a group of international authors, the chapters address the following themes: Mathematics teacher education and professional development Mathematics curriculum development and task design The assessment of mathematics Theoretical perspectives and methodologies/approaches for researching mathematics education in the digital age This book highlights not only the complex nature of the field, but also the advancements in theoretical and practical knowledge that is enabling the mathematics education community to continue to learn in this increasingly digital age. It is an essential read for all mathematics teacher educators and master teachers.
School-university partnerships have the potential to greatly benefit teaching and learning in PK-12 environments, as well as educator preparation programs. This collaboration is advantageous to teachers, counselors, and administrators. Professional Development Schools and Transformative Partnerships provides a comprehensive look at the design, implementation, and impact of educational initiatives between schools and universities. Including cases and research on existing collaborations, this publication addresses barriers and trends in order to provide direction for successful partnerships in the future. This book is an essential reference source for educational leaders in colleges, schools, and departments of education, as well as leaders of PK-12 schools.
Advanced Mathematics for Engineering Students: The Essential Toolbox provides a concise treatment for applied mathematics. Derived from two semester advanced mathematics courses at the author's university, the book delivers the mathematical foundation needed in an engineering program of study. Other treatments typically provide a thorough but somewhat complicated presentation where students do not appreciate the application. This book focuses on the development of tools to solve most types of mathematical problems that arise in engineering – a "toolbox for the engineer. It provides an important foundation but goes one step further and demonstrates the practical use of new technology for applied analysis with commercial software packages (e.g., algebraic, numerical and statistical). - Delivers a focused and concise treatment on the underlying theory and direct application of mathematical methods so that the reader has a collection of important mathematical tools that are easily understood and ready for application as a practicing engineer - The book material has been derived from class-tested courses presented over many years in applied mathematics for engineering students (all problem sets and exam questions given for the course(s) are included along with a solution manual) - Provides fundamental theory for applied mathematics while also introducing the application of commercial software packages as modern tools for engineering application, including: EXCEL (statistical analysis); MAPLE (symbolic and numeric computing environment); and COMSOL (finite element solver for ordinary and partial differential equations)
As the public and producers becomes more aware of the environmental and economic benefits of precision farming, there has been increased demand for quality training to accurately evaluate spatial variability within fields. Practical Mathematics in Precision Farming provides hand-on training and examples for certified crop consultants (CCAs), farmers, crop consultants, and students (both undergraduate and graduate) on how to conduct to conduct and analyze on-farm studies, write simple programs, use precision techniques to scout for pests and collect soil samples, develop management zones, determine the cost of production, assess the environmental consequences of precision techniques, understand soil test results, and develop site-specific nutrient and plant population algorithms. Using real agronomic examples, the reader is taught the crucial task of managing products and inputs for application at the right rate, place, and time.
A Student's Guide to the Study, Practice, and Tools of Modern Mathematics provides an accessible introduction to the world of mathematics. It offers tips on how to study and write mathematics as well as how to use various mathematical tools, from LaTeX and Beamer to Mathematica and Maple to MATLAB and R. Along with a color insert, the text include
This text places the basic ideas of real analysis and numerical analysis together in an applied setting that is both accessible and motivational to young students. The essentials of real analysis are presented in the context of a fundamental problem of applied mathematics, which is to approximate the solution of a physical model. The framework of existence, uniqueness, and methods to approximate solutions of model equations is sufficiently broad to introduce and motivate all the basic ideas of real analysis. The book includes background and review material, numerous examples, visualizations and alternate explanations of some key ideas, and a variety of exercises ranging from simple computations to analysis and estimates to computations on a computer.