Download Free Practical Formal Software Engineering Book in PDF and EPUB Free Download. You can read online Practical Formal Software Engineering and write the review.

Based around a theme of the construction of a game engine, this textbook is for final year undergraduate and graduate students, emphasising formal methods in writing robust code quickly. This book takes an unusual, engineering-inspired approach to illuminate the creation and verification of large software systems . Where other textbooks discuss business practices through generic project management techniques or detailed rigid logic systems, this book examines the interaction between code in a physical machine and the logic applied in creating the software. These elements create an informal and rigorous study of logic, algebra, and geometry through software. Assuming prior experience with C, C++, or Java programming languages, chapters introduce UML, OCL, and Z from scratch. Extensive worked examples motivate readers to learn the languages through the technical side of software science.
In any serious engineering discipline, it would be unthinkable to construct a large system without having a precise notion of what is to be built and without verifying how the system is expected to function. Software engineering is no different in this respect. Formal methods involve the use of mathematical notation and calculus in software development; such methods are difficult to apply to large-scale systems with practical constraints (e.g., limited developer skills, time and budget restrictions, changing requirements). Here Liu claims that formal engineering methods may bridge this gap. He advocates the incorporation of mathematical notation into the software engineering process, thus substantially improving the rigor, comprehensibility and effectiveness of the methods commonly used in industry. This book provides an introduction to the SOFL (Structured Object-Oriented Formal Language) method that was designed and industry-tested by the author. Written in a style suitable for lecture courses or for use by professionals, there are numerous exercises and a significant real-world case study, so the readers are provided with all the knowledge and examples needed to successfully apply the method in their own projects.
Software programs are formal entities with precise meanings independent of their programmers, so the transition from ideas to programs necessarily involves a formalisation at some point. The first part of this graduate-level introduction to formal methods develops an understanding of what constitutes formal methods and what their place is in Software Engineering. It also introduces logics as languages to describe reasoning and the process algebra CSP as a language to represent behaviours. The second part offers specification and testing methods for formal development of software, based on the modelling languages CASL and UML. The third part takes the reader into the application domains of normative documents, human machine interfaces, and security. Use of notations and formalisms is uniform throughout the book. Topics and features: Explains foundations, and introduces specification, verification, and testing methods Explores various application domains Presents realistic and practical examples, illustrating concepts Brings together contributions from highly experienced educators and researchers Offers modelling and analysis methods for formal development of software Suitable for graduate and undergraduate courses in software engineering, this uniquely practical textbook will also be of value to students in informatics, as well as to scientists and practical engineers, who want to learn about or work more effectively with formal theories and methods. Markus Roggenbach is a Professor in the Dept. of Computer Science of Swansea University. Antonio Cerone is an Associate Professor in the Dept. of Computer Science of Nazarbayev University, Nur-Sultan. Bernd-Holger Schlingloff is a Professor in the Institut für Informatik of Humboldt-Universität zu Berlin. Gerardo Schneider is a Professor in the Dept. of Computer Science and Engineering of University of Gothenburg. Siraj Ahmed Shaikh is a Professor in the Institute for Future Transport and Cities of Coventry University. The companion site for the book offers additional resources, including further material for selected chapters, prepared lab classes, a list of errata, slides and teaching material, and virtual machines with preinstalled tools and resources for hands-on experience with examples from the book. The URL is: https://sefm-book.github.io
In this book, Hussmann builds a bridge between the pragmatic methods for the design of information systems and the formal, mathematical background. Firstly, the principal feasibility of an integration of the different methods is demonstrated. Secondly, the formalism is used as a systematic semantic analysis of the concepts in SSADM, a British standard structured software engineering method. Thirdly, a way of obtaining a hybrid formal-pragmatic specification using a combination of SSADM notations and formal (SPECTRUM) specifications is shown. This well-written book encourages scientists and software engineers to apply formal methods to practical software development problems.
"Aimed mainly at practitioners in software engineering and formal methods, this book will also be of interest to academic researchers working in formal methods, and students on advanced software engineering courses who need real-life specifications and examples on which to base their work."--Jacket.
Formal Methods Fact File VDM and Z Andrew Harry Formal methods provide a means of specifying computer systems that is unambiguous,concise and well suited to the development of complex software systems for which accuracy and reliability are critical. Heavily mathematical and seemingly difficult to learn, for many they hold little appeal. Andrew Harry speaks as a programmer who has travelled the difficult route to an understanding of formal methods techniques, and knows why it’s worth the effort. He explains, in refreshingly simple terms, what formal methods are, why we need them, what should motivate our choice of methods and how to use them effectively. The book presents a novel view of formal methods, spanning the range of specification techniques. An overview of the different styles of formal notation is followed by detailed chapters on the two most popular languages, VDM and Z, consistent with the latest draft standards. There is a readable account of the underlying maths, a short introduction to semantics for proof, and a survey of tools available. Teaching aids include quick reference appendices on the notation and syntax of VDM and Z; exercises (and their solutions); and a useful glossary of terms. A more populist account than most, this book’s "informal" treatment of the subject will appeal to students and industrial programmers who want to know more but find little on the shelves for the novice. Visit our Web page! http://www.wiley.com/compbooks/
This book is a broad discussion covering the entire software development lifecycle. It uses a comprehensive case study to address each topic and features the following: A description of the development, by the fictional company Homeowner, of the DigitalHome (DH) System, a system with "smart" devices for controlling home lighting, temperature, humidity, small appliance power, and security A set of scenarios that provide a realistic framework for use of the DH System material Just-in-time training: each chapter includes mini tutorials introducing various software engineering topics that are discussed in that chapter and used in the case study A set of case study exercises that provide an opportunity to engage students in software development practice, either individually or in a team environment. Offering a new approach to learning about software engineering theory and practice, the text is specifically designed to: Support teaching software engineering, using a comprehensive case study covering the complete software development lifecycle Offer opportunities for students to actively learn about and engage in software engineering practice Provide a realistic environment to study a wide array of software engineering topics including agile development Software Engineering Practice: A Case Study Approach supports a student-centered, "active" learning style of teaching. The DH case study exercises provide a variety of opportunities for students to engage in realistic activities related to the theory and practice of software engineering. The text uses a fictitious team of software engineers to portray the nature of software engineering and to depict what actual engineers do when practicing software engineering. All the DH case study exercises can be used as team or group exercises in collaborative learning. Many of the exercises have specific goals related to team building and teaming skills. The text also can be used to support the professional development or certification of practicing software engineers. The case study exercises can be integrated with presentations in a workshop or short course for professionals.
Static analysis of software with deductive methods is a highly dynamic field of research on the verge of becoming a mainstream technology in software engineering. It consists of a large portfolio of - mostly fully automated - analyses: formal verification, test generation, security analysis, visualization, and debugging. All of them are realized in the state-of-art deductive verification framework KeY. This book is the definitive guide to KeY that lets you explore the full potential of deductive software verification in practice. It contains the complete theory behind KeY for active researchers who want to understand it in depth or use it in their own work. But the book also features fully self-contained chapters on the Java Modeling Language and on Using KeY that require nothing else than familiarity with Java. All other chapters are accessible for graduate students (M.Sc. level and beyond). The KeY framework is free and open software, downloadable from the book companion website which contains also all code examples mentioned in this book.
"This book addresses the topic of software design: how to decompose complex software systems into modules (such as classes and methods) that can be implemented relatively independently. The book first introduces the fundamental problem in software design, which is managing complexity. It then discusses philosophical issues about how to approach the software design process and it presents a collection of design principles to apply during software design. The book also introduces a set of red flags that identify design problems. You can apply the ideas in this book to minimize the complexity of large software systems, so that you can write software more quickly and cheaply."--Amazon.
This book constitutes the refereed proceedings of the 18th International Conference on Formal Engineering Methods, ICFEM 2016, held in Tokyo, Japan, in November 2016. The 27 revised full papers presented together with three invited talks were carefully reviewed and selected from 64 submissions. The conference focuses in all areas related to formal engineering meth-ods, such as verification and validation, software engineering, formal specification and modeling, software security, and software reliability.