Download Free Practical Curve Fitting And Data Analysis Book in PDF and EPUB Free Download. You can read online Practical Curve Fitting And Data Analysis and write the review.

This guide focuses on how to make graphs and abstract physical information from data using a personal computer. This tutorial program/book package covers the elements of curve fitting and statistical treatment of data and numerical analysis. Taking a step-by-step approach, the book, the program, and the accompanying data files are designed to demonstrate common errors and pitfalls. It contains examples from analytical chemistry, chemical engineering and biochemistry. For those engineers and/or scientists who want to easily make graphs and plot physical information from data with a microcomputer.
Most biologists use nonlinear regression more than any other statistical technique, but there are very few places to learn about curve-fitting. This book, by the author of the very successful Intuitive Biostatistics, addresses this relatively focused need of an extraordinarily broad range of scientists.
Practical Handbook of Curve Fitting is a reference work assembled by Arlinghaus and a set of editors with well over a century of combined experience in various disciplines and activities related to curve fitting. The book demonstrates how to analyze World data bases and graph and map the results. Default settings in software packages can produce attractive graphs of data imported into the software. Often, however, the default graph has no equation associated with it and cannot therefore be used as a tool for further analysis or projection of the data. The same software can often be used to generate curves from equations. The reader is shown directly, and in a series of steps, how to fit curves to data using Lotus 1-2-3. There are traditional unbounded curve fitting techniques-lines of least squares, exponentials, logistic curves, and Gompertz curves. There is the bounded curve fitting technique of cubic spline interpolation. Beyond these, there is a detailed application of Feigenbaum's graphical analysis from chaos theory, and there is a hint as to how fractal geometry might come into play. Curve fitting algorithms take on new life when they are actually used on real-world data. They are used in numerous worked examples drawn from electronic data bases of public domain information from the Stars data base of The World Bank and from the WRD data base of the World Resources Institute. The applications are current and reflect a state-of-the-art interest in the human dimensions of global change.
Practical Handbook of Curve Fitting is a reference work assembled by Arlinghaus and a set of editors with well over a century of combined experience in various disciplines and activities related to curve fitting. The book demonstrates how to analyze World data bases and graph and map the results. Default settings in software packages can produce attractive graphs of data imported into the software. Often, however, the default graph has no equation associated with it and cannot therefore be used as a tool for further analysis or projection of the data. The same software can often be used to generate curves from equations. The reader is shown directly, and in a series of steps, how to fit curves to data using Lotus 1-2-3. There are traditional unbounded curve fitting techniques-lines of least squares, exponentials, logistic curves, and Gompertz curves. There is the bounded curve fitting technique of cubic spline interpolation. Beyond these, there is a detailed application of Feigenbaum's graphical analysis from chaos theory, and there is a hint as to how fractal geometry might come into play. Curve fitting algorithms take on new life when they are actually used on real-world data. They are used in numerous worked examples drawn from electronic data bases of public domain information from the Stars data base of The World Bank and from the WRD data base of the World Resources Institute. The applications are current and reflect a state-of-the-art interest in the human dimensions of global change.
The fitting of a curve or surface through a set of observational data is a very frequent problem in different disciplines (mathematics, engineering, medicine, ...) with many interesting applications. This book describes the algorithms and mathematical fundamentals of a widely used software package for data fitting with (tensor product) splines. As such it gives a survey of possibilities and benefits but also of the problems to cope with when approximating with this popular type of function. In particular it is demonstrated in detail how the properties of B-splines can be fully exploited for improving the computational efficiency and for incorporating different boundary or shape preserving constraints. Special attention is also paid to strategies for an automatic and adaptive knot selection with intent to obtain serious data reductions. The practical use of the smoothing software is illustrated with many examples, academic as well as taken from real life.
A lucid explanation of the intricacies of both simple and complex least squares methods. As one of the classical statistical regression techniques, and often the first to be taught to new students, least squares fitting can be a very effective tool in data analysis. Given measured data, we establish a relationship between independent and dependent variables so that we can use the data predictively. The main concern of Least Squares Data Fitting with Applications is how to do this on a computer with efficient and robust computational methods for linear and nonlinear relationships. The presentation also establishes a link between the statistical setting and the computational issues. In a number of applications, the accuracy and efficiency of the least squares fit is central, and Per Christian Hansen, Víctor Pereyra, and Godela Scherer survey modern computational methods and illustrate them in fields ranging from engineering and environmental sciences to geophysics. Anyone working with problems of linear and nonlinear least squares fitting will find this book invaluable as a hands-on guide, with accessible text and carefully explained problems. Included are • an overview of computational methods together with their properties and advantages • topics from statistical regression analysis that help readers to understand and evaluate the computed solutions • many examples that illustrate the techniques and algorithms Least Squares Data Fitting with Applications can be used as a textbook for advanced undergraduate or graduate courses and professionals in the sciences and in engineering.
Analyze your biostatistics data with JMP! Trevor Bihl's Biostatistics Using JMP: A Practical Guide provides a practical introduction on using JMP, the interactive statistical discovery software, to solve biostatistical problems. Providing extensive breadth, from summary statistics to neural networks, this essential volume offers a comprehensive, step-by-step guide to using JMP to handle your data. The first biostatistical book to focus on software, Biostatistics Using JMP discusses such topics as data visualization, data wrangling, data cleaning, histograms, box plots, Pareto plots, scatter plots, hypothesis tests, confidence intervals, analysis of variance, regression, curve fitting, clustering, classification, discriminant analysis, neural networks, decision trees, logistic regression, survival analysis, control charts, and metaanalysis. Written for university students, professors, those who perform biological/biomedical experiments, laboratory managers, and research scientists, Biostatistics Using JMP provides a practical approach to using JMP to solve your biostatistical problems.
This practical resource presents basic probabilistic and statistical methods or tools used to extract the information from reliability data to make sound decisions. It consolidates and condenses the reliability data analysis methods most often used in everyday practice into an easy-to-follow guide, while also providing a solid foundation from which to explore more complex methods if desired. The book provides mathematical and Excel spreadsheet formulas to estimate parameters and confidence bounds (uncertainty) for the most common probability distributions used in reliability analysis. Several other Excel tools are provided to aid users without access to expensive, dedicated, commercial tools. This book and tools were developed by the authors after many years of teaching the fundamentals of reliability data analysis to a broad range of technical and non-technical military and civilian personnel, making it useful for both novice and experienced engineers.
Placing data in the context of the scientific discovery of knowledge through experimentation, Practical Data Analysis for Designed Experiments examines issues of comparing groups and sorting out factor effects and the consequences of imbalance and nesting, then works through more practical applications of the theory. Written in a modern and accessible manner, this book is a useful blend of theory and methods. Exercises included in the text are based on real experiments and real data.
Examples from diverse areas of statistical application demonstrate the use of R for data analysis and associated graphics.