Download Free Practical Computing Book in PDF and EPUB Free Download. You can read online Practical Computing and write the review.

Practical Computing for Biologists shows you how to use many freely available computing tools to work more powerfully and effectively. The book was born out of the authors' own experience in developing tools for their research and helping other biologists with their computational problems. Many of the techniques are relevant to molecular bioinformatics but the scope of the book is much broader, covering topics and techniques that are applicable to a range of scientific endeavours. Twenty-two chapters organized into six parts address the following topics (and more; see Contents): • Searching with regular expressions • The Unix command line • Python programming and debugging • Creating and editing graphics • Databases • Performing analyses on remote servers • Working with electronics While the main narrative focuses on Mac OS X, most of the concepts and examples apply to any operating system. Where there are differences for Windows and Linux users, parallel instructions are provided in the margin and in an appendix. The book is designed to be used as a self-guided resource for researchers, a companion book in a course, or as a primary textbook. Practical Computing for Biologists will free you from the most frustrating and time-consuming aspects of data processing so you can focus on the pleasures of scientific inquiry.
Practical Programming in the Cell Broadband Engine offers a unique programming guide for the Cell Broadband Engine, demonstrating a large number of real-life programs to identify and solve problems in engineering, logic design, VLSI CAD, number-theory, graph-theory, computational geometry, image processing, and other subjects. Key features include: Numerous diagrams, mnemonics, tables, charts, code samples for making program development on the CBE as accessible as possible Comprehensive reading list for introductory material to the subject matter A website providing all source codes and sample-data for examples presented in this text.
The Practical Handbook of Internet Computing analyzes a broad array of technologies and concerns related to the Internet, including corporate intranets. Fresh and insightful articles by recognized experts address the key challenges facing Internet users, designers, integrators, and policymakers. In addition to discussing major applications, it also
Quantum information is a young and evolving field. This compendium introduces quantum information in a comprehensive self-contained guide without assuming a wealth of knowledge prior to reading.The volume highlights intuition on counterintuitive topics such as quantum mechanics, basic mathematical tools and calculations involving linear algebra, and applies these concepts to quantum information with guided problems and coding exercises.This applied guide largely benefits mid-level undergraduates and perhaps motivated high schoolers.
A practical guide designed to get you from basics to current state of art in computer vision systems. Key Features Master the different tasks associated with Computer Vision and develop your own Computer Vision applications with ease Leverage the power of Python, Tensorflow, Keras, and OpenCV to perform image processing, object detection, feature detection and more With real-world datasets and fully functional code, this book is your one-stop guide to understanding Computer Vision Book Description In this book, you will find several recently proposed methods in various domains of computer vision. You will start by setting up the proper Python environment to work on practical applications. This includes setting up libraries such as OpenCV, TensorFlow, and Keras using Anaconda. Using these libraries, you'll start to understand the concepts of image transformation and filtering. You will find a detailed explanation of feature detectors such as FAST and ORB; you'll use them to find similar-looking objects. With an introduction to convolutional neural nets, you will learn how to build a deep neural net using Keras and how to use it to classify the Fashion-MNIST dataset. With regard to object detection, you will learn the implementation of a simple face detector as well as the workings of complex deep-learning-based object detectors such as Faster R-CNN and SSD using TensorFlow. You'll get started with semantic segmentation using FCN models and track objects with Deep SORT. Not only this, you will also use Visual SLAM techniques such as ORB-SLAM on a standard dataset. By the end of this book, you will have a firm understanding of the different computer vision techniques and how to apply them in your applications. What you will learn Learn the basics of image manipulation with OpenCV Implement and visualize image filters such as smoothing, dilation, histogram equalization, and more Set up various libraries and platforms, such as OpenCV, Keras, and Tensorflow, in order to start using computer vision, along with appropriate datasets for each chapter, such as MSCOCO, MOT, and Fashion-MNIST Understand image transformation and downsampling with practical implementations. Explore neural networks for computer vision and convolutional neural networks using Keras Understand working on deep-learning-based object detection such as Faster-R-CNN, SSD, and more Explore deep-learning-based object tracking in action Understand Visual SLAM techniques such as ORB-SLAM Who this book is for This book is for machine learning practitioners and deep learning enthusiasts who want to understand and implement various tasks associated with Computer Vision and image processing in the most practical manner possible. Some programming experience would be beneficial while knowing Python would be an added bonus.
An accessible and rigorous textbook for introducing undergraduates to computer science theory What Can Be Computed? is a uniquely accessible yet rigorous introduction to the most profound ideas at the heart of computer science. Crafted specifically for undergraduates who are studying the subject for the first time, and requiring minimal prerequisites, the book focuses on the essential fundamentals of computer science theory and features a practical approach that uses real computer programs (Python and Java) and encourages active experimentation. It is also ideal for self-study and reference. The book covers the standard topics in the theory of computation, including Turing machines and finite automata, universal computation, nondeterminism, Turing and Karp reductions, undecidability, time-complexity classes such as P and NP, and NP-completeness, including the Cook-Levin Theorem. But the book also provides a broader view of computer science and its historical development, with discussions of Turing's original 1936 computing machines, the connections between undecidability and Gödel's incompleteness theorem, and Karp's famous set of twenty-one NP-complete problems. Throughout, the book recasts traditional computer science concepts by considering how computer programs are used to solve real problems. Standard theorems are stated and proven with full mathematical rigor, but motivation and understanding are enhanced by considering concrete implementations. The book's examples and other content allow readers to view demonstrations of—and to experiment with—a wide selection of the topics it covers. The result is an ideal text for an introduction to the theory of computation. An accessible and rigorous introduction to the essential fundamentals of computer science theory, written specifically for undergraduates taking introduction to the theory of computation Features a practical, interactive approach using real computer programs (Python in the text, with forthcoming Java alternatives online) to enhance motivation and understanding Gives equal emphasis to computability and complexity Includes special topics that demonstrate the profound nature of key ideas in the theory of computation Lecture slides and Python programs are available at whatcanbecomputed.com
With the same insight and authority that made their book The Unix Programming Environment a classic, Brian Kernighan and Rob Pike have written The Practice of Programming to help make individual programmers more effective and productive. The practice of programming is more than just writing code. Programmers must also assess tradeoffs, choose among design alternatives, debug and test, improve performance, and maintain software written by themselves and others. At the same time, they must be concerned with issues like compatibility, robustness, and reliability, while meeting specifications. The Practice of Programming covers all these topics, and more. This book is full of practical advice and real-world examples in C, C++, Java, and a variety of special-purpose languages. It includes chapters on: debugging: finding bugs quickly and methodically testing: guaranteeing that software works correctly and reliably performance: making programs faster and more compact portability: ensuring that programs run everywhere without change design: balancing goals and constraints to decide which algorithms and data structures are best interfaces: using abstraction and information hiding to control the interactions between components style: writing code that works well and is a pleasure to read notation: choosing languages and tools that let the machine do more of the work Kernighan and Pike have distilled years of experience writing programs, teaching, and working with other programmers to create this book. Anyone who writes software will profit from the principles and guidance in The Practice of Programming.
Presents a popular computer language called BASIC and explains how to write simple programs in it.