Download Free Powertrain Systems For A Sustainable Future Book in PDF and EPUB Free Download. You can read online Powertrain Systems For A Sustainable Future and write the review.

The transport sector continues to shift towards alternative powertrains, particularly with the UK Government’s focus on ending the sale of petrol and diesel passenger cars by 2030 and increasing support for alternatives. Despite this announcement, the internal combustion could continue to play a significant role both in the passenger car market through the use of hybrids and sustainable low carbon fuels including hydrogen, as well as a key role in other sectors such as heavy-duty vehicles and off-highway applications across the globe. The contributions presented at the International Conference on Powertrain Systems for a Sustainable Future 2023 (London, UK, 29- 30 November 2023) focus on the internal combustion engine’s role in net-zero transport as well as covering developments in the wide range of propulsion systems available (electric, hydrogen internal combustion engines and fuel cells, sustainable fuels etc) and their associated powertrains. To achieve a sustainable future for transport across the globe we will need to deploy all technologies and so, to help understand how these might fit together, life-cycle analysis of future powertrain systems and energy will also be included. Powertrain Systems for a Sustainable Future provides a forum for engine, fuels, e-machine, fuel cell and powertrain experts to look closely at developments in powertrain technology required to meet the demands of the net-zero future and global competition in all sectors of the road transportation, off-highway, marine and stationary power industries.
The transport sector continues to shift towards alternative powertrains, particularly with the UK Government’s announcement to end the sale of petrol and diesel passenger cars by 2030 and increasing support for alternatives. Despite this announcement, the internal combustion continues to play a significant role both in the passenger car market through the use of hybrids and sustainable low carbon fuels, as well as a key role in other sectors such as heavy-duty vehicles and off-highway applications across the globe. Building on the industry-leading IC Engines conference, the 2021 Powertrain Systems for Net-Zero Transport conference (7-8 December 2021, London, UK) focussed on the internal combustion engine’s role in Net-Zero transport as well as covered developments in the wide range of propulsion systems available (electric, fuel cell, sustainable fuels etc) and their associated powertrains. To achieve the net-zero transport across the globe, the life-cycle analysis of future powertrain and energy was also discussed. Powertrain Systems for Net-Zero Transport provided a forum for engine, fuels, e-machine, fuel cell and powertrain experts to look closely at developments in powertrain technology required, to meet the demands of the net-zero future and global competition in all sectors of the road transportation, off-highway and stationary power industries.
The powertrain is at the heart of vehicle design; the engine – whether it is a conventional, hybrid or electric design – provides the motive power, which is then managed and controlled through the transmission and final drive components. The overall powertrain system therefore defines the dynamic performance and character of the vehicle. The design of the powertrain has conventionally been tackled by analyzing each of the subsystems individually and the individual components, for example, engine, transmission and driveline have received considerable attention in textbooks over the past decades. The key theme of this book is to take a systems approach – to look at the integration of the components so that the whole powertrain system meets the demands of overall energy efficiency and good drivability. Vehicle Powertrain Systems provides a thorough description and analysis of all the powertrain components and then treats them together so that the overall performance of the vehicle can be understood and calculated. The text is well supported by practical problems and worked examples. Extensive use is made of the MATLAB(R) software and many example programmes for vehicle calculations are provided in the text. Key features: Structured approach to explaining the fundamentals of powertrain engineering Integration of powertrain components into overall vehicle design Emphasis on practical vehicle design issues Extensive use of practical problems and worked examples Provision of MATLAB(R) programmes for the reader to use in vehicle performance calculations This comprehensive and integrated analysis of vehicle powertrain engineering provides an invaluable resource for undergraduate and postgraduate automotive engineering students and is a useful reference for practicing engineers in the vehicle industry
Among the various factors greatly influencing the development process of future powertrain technologies, the trends in climate change and digitalization are of huge public interest. To handle these trends, new disruptive technologies are integrated into the development process. They open up space for diverse research which is distributed over the entire vehicle design process. This book contains recent research articles which incorporate results for selecting and designing powertrain topology in consideration of the vehicle operating strategy as well as results for handling the reliability of new powertrain components. The field of investigation spans from the identification of ecologically optimal transformation of the existent vehicle fleet to the development of machine learning-based operating strategies and the comparison of complex hybrid electric vehicle topologies to reduce CO2 emissions.
Integrating electric vehicles (EVs) into power distribution systems presents significant challenges, particularly concerning power source dependability and grid stability. The distribution system, a critical element of the power system, is susceptible to failures and power outages exacerbated by the extensive adoption of EVs. Additionally, managing the administration, monitoring, and control of power systems in the context of EV integration is a complex and daunting task for energy experts. A Sustainable Future with E-Mobility: Concepts, Challenges, and Implementations offers a comprehensive solution to these challenges. It explores infrastructure frameworks, planning strategies, control strategies, and software applications for integrating EVs with power distribution systems, focusing on innovative grid developments. By providing insights into architectural reconfiguration, restoration strategies, power quality control, and regulatory aspects, the book equips students, researchers, academicians, policymakers, and industry experts with the knowledge needed to achieve a secure, resilient, and efficient integration of EVs into distribution networks.
The book deals with the increasingly complex test systems for powertrain components and systems giving an overview of the diverse types of test beds for all components of an advanced powertrain focusing on specific topics such as instrumentation, control, simulation, hardware-in-the-loop, automation or test facility management. This book is intended for powertrain (component) development engineers, test bed planners, test bed operators and beginners.
This book focuses on clean transport and mobility essential to the modern world. It discusses internal combustion engines (ICEs) and alternatives like battery electric vehicles (BEVs) which are growing fast. Alternatives to ICEs start from a very low base and face formidable environmental, material availability, and economic challenges to unlimited and rapid growth. Hence ICEs will continue to be the main power source for transport for decades to come and have to be continuously improved to improve transport sustainability. The book highlights the need to assess proposed changes in the existing transport system on a life cycle basis. The volume includes chapters discussing the challenges faced by ICEs as well as chapters on novel fuels and fuel/ engine interactions which help in this quest to improve the efficiency of ICE and reduce exhaust pollutants. This book will be of interest to those in academia and industry alike.
Sustainable Development Goals (SDGs) are goals set by the United Nations to address the global challenges and foster sustainable development and harmony. To effectively achieve these goals, leveraging advanced technologies and engineering techniques is paramount. This edited volume explores the pivotal role of technology and engineering in advancing the SDGs across various sectors such as green energy, water management, healthcare, agriculture, and smart manufacturing. From innovative solutions in clean energy production to precision agriculture and smart cities, technological advancements offer scalable and efficient approaches to tackle complex sustainability issues.
This exciting new book highlights and discusses new concepts for enhanced efficiency of ships and how they are operated, primarily resting on reducing the environmental footprints and operational expenses. An overview of technological and regulatory developments and drivers for the challenges described above is provided. Readers learn about sustainable energies and power for propulsion, particularly maritime electrification. The book includes shore-based initiatives on greenhouse gas reduction in shipping. Status and current practices for propulsion arrangements using renewable energy technologies are presented with examples on ships representing several categories of energies and power. Energy solutions that enable future digital and automated concepts for safe, secure, and cost-effective sustainable shipping are discussed, as well as the concept of autonomous ships as part of maritime electrification and all the possibilities. The development of renewable energies and the concept of autonomous ships provide glimpses for the development of future sustainable maritime transport solutions. Lessons learned and existing knowledge are important elements for successful transmission towards future concepts for safe, secure, and efficient maritime environmentally friendly and low-cost solutions to our sustainable power and energy challenges that lie ahead. The book discusses the work ahead and provides future thoughts on this issue.
This volume contains a selection of papers presented at the 7th Nirma University International Conference on Engineering ‘NUiCONE 2019’. This conference followed the successful organization of four national conferences and six international conferences in previous years. The main theme of the conference was “Technologies for Sustainable Development”, which is in line with the “SUSTAINABLE DEVELOPMENT GOAL” established by the United Nations. The conference was organized with many inter-disciplinary technical themes encompassing a broad range of disciplines and enabling researchers, academicians and practitioners to choose between ideas and themes. Besides, NUiCONE-2019 has also presented an exciting new set of events to engage practicing engineers, technologists and technopreneurs from industry through special knowledge sharing sessions involving applied technical papers based on case-study applications, white-papers, panel discussions, innovations and technology products. This proceedings will definitely provide a platform to proliferate new findings among researchers. Advances in Transportation Engineering Emerging Trends in Water Resources and Environmental Engineering Construction Technology and Management Concrete and Structural Engineering Futuristic Power System Control of Power Electronics Converters, Drives and E-mobility Advanced Electrical Machines and Smart Apparatus Chemical Process Development and Design Technologies and Green Environment Sustainable Manufacturing Processes Design and Analysis of Machine and Mechanism Energy Conservation and Management Advances in Networking Technologies Machine Intelligence / Computational Intelligence Autonomic Computing Control and Automation Electronic Communications Electronics Circuits and System Design Signal Processing