Download Free Power Systems Cybersecurity Book in PDF and EPUB Free Download. You can read online Power Systems Cybersecurity and write the review.

This book offers a systematic explanation of cybersecurity protection of electricity supply facilities, including discussion of related costs, relevant standards, and recent solutions. The author explains the current state of cybersecurity in the electricity market, and cybersecurity standards that apply in that sector. He then offers a systematic approach to cybersecurity management, including new methods of cybersecurity assessment, cost evaluation and comprehensive defence. This monograph is suitable for practitioners, professionals, and researchers engaged in critical infrastructure protection.
In an uncertain and complex environment, to ensure secure and stable operations of large-scale power systems is one of the biggest challenges that power engineers have to address today. Traditionally, power system operations and decision-making in controls are based on power system computations of physical models describing the behavior of power systems. Largely, physical models are constructed according to some assumptions and simplifications, and such is the case with power system models. However, the complexity of power system stability problems, along with the system's inherent uncertainties and nonlinearities, can result in models that are impractical or inaccurate. This calls for adaptive or deep-learning algorithms to significantly improve current control schemes that solve decision and control problems. Cyberphysical Infrastructures in Power Systems: Architectures and Vulnerabilities provides an extensive overview of CPS concepts and infrastructures in power systems with a focus on the current state-of-the-art research in this field. Detailed classifications are pursued highlighting existing solutions, problems, and developments in this area. Gathers the theoretical preliminaries and fundamental issues related to CPS architectures. Provides coherent results in adopting control and communication methodologies to critically examine problems in various units within smart power systems and microgrid systems. Presents advanced analysis under cyberphysical attacks and develops resilient control strategies to guarantee safe operation at various power levels.
This book gathers the latest research results of scientists from different countries who have made essential contributions to the novel analysis of cyber security. Addressing open problems in the cyber world, the book consists of two parts. Part I focuses on cyber operations as a new tool in global security policy, while Part II focuses on new cyber security technologies when building cyber power capabilities. The topics discussed include strategic perspectives on cyber security and cyber warfare, cyber security implementation, strategic communication, trusted computing, password cracking, systems security and network security among others.
This book documents recent advances in the field of modeling, simulation, control, security and reliability of Cyber- Physical Systems (CPS) in power grids. The aim of this book is to help the reader gain insights into working of CPSs and understand their potential in transforming the power grids of tomorrow. This book will be useful for all those who are interested in design of cyber-physical systems, be they students or researchers in power systems, CPS modeling software developers, technical marketing professionals and business policy-makers.
This book covers power systems cybersecurity. In order to enhance overall stability and security in wide-area cyber-physical power systems and defend against cyberattacks, new resilient operation, control, and protection methods are required. The cyberattack-resilient control methods improve overall cybersecurity and stability in normal and abnormal operating conditions. By contrast, cyberattack-resilient protection schemes are important to keep the secure operation of a system under the most severe contingencies and cyberattacks. The main subjects covered in the book are: 1) proposing new tolerant and cyberattack-resilient control and protection methods against cyberattacks for future power systems, 2) suggesting new methods for cyberattack detection and cybersecurity assessment, and 3) focusing on practical issues in modern power systems.
Many people think of the Smart Grid as a power distribution group built on advanced smart metering—but that's just one aspect of a much larger and more complex system. The "Smart Grid" requires new technologies throughout energy generation, transmission and distribution, and even the homes and businesses being served by the grid. This also represents new information paths between these new systems and services, all of which represents risk, requiring a more thorough approach to where and how cyber security controls are implemented. This insight provides a detailed architecture of the entire Smart Grid, with recommended cyber security measures for everything from the supply chain to the consumer. - Discover the potential of the Smart Grid - Learn in depth about its systems - See its vulnerabilities and how best to protect it
Advances in Smart Grid Power System: Network, Control and Security discusses real world problems, solutions, and best practices in related fields. The book includes executable plans for smart grid systems, their network communications, tactics on protecting information, and response plans for cyber incidents. Moreover, it enables researchers and energy professionals to understand the future of energy delivery systems and security. Covering fundamental theory, mathematical formulations, practical implementations, and experimental testing procedures, this book gives readers invaluable insights into the field of power systems, their quality and reliability, their impact, and their importance in cybersecurity. - Includes supporting illustrations and tables along with valuable end of chapter reference sets - Provides a working guideline for the design and analysis of smart grids and their applications - Features experimental testing procedures in smart grid power systems, communication networks, reliability, and cybersecurity
Accidents and natural disasters involving nuclear power plants such as Chernobyl, Three Mile Island, and the recent meltdown at Fukushima are rare, but their effects are devastating enough to warrant increased vigilance in addressing safety concerns. Nuclear Power Plant Instrumentation and Control Systems for Safety and Security evaluates the risks inherent to nuclear power and methods of preventing accidents through computer control systems and other such emerging technologies. Students and scholars as well as operators and designers will find useful insight into the latest security technologies with the potential to make the future of nuclear energy clean, safe, and reliable.
Countering Cyber Sabotage: Introducing Consequence-Driven, Cyber-Informed Engineering (CCE) introduces a new methodology to help critical infrastructure owners, operators and their security practitioners make demonstrable improvements in securing their most important functions and processes. Current best practice approaches to cyber defense struggle to stop targeted attackers from creating potentially catastrophic results. From a national security perspective, it is not just the damage to the military, the economy, or essential critical infrastructure companies that is a concern. It is the cumulative, downstream effects from potential regional blackouts, military mission kills, transportation stoppages, water delivery or treatment issues, and so on. CCE is a validation that engineering first principles can be applied to the most important cybersecurity challenges and in so doing, protect organizations in ways current approaches do not. The most pressing threat is cyber-enabled sabotage, and CCE begins with the assumption that well-resourced, adaptive adversaries are already in and have been for some time, undetected and perhaps undetectable. Chapter 1 recaps the current and near-future states of digital technologies in critical infrastructure and the implications of our near-total dependence on them. Chapters 2 and 3 describe the origins of the methodology and set the stage for the more in-depth examination that follows. Chapter 4 describes how to prepare for an engagement, and chapters 5-8 address each of the four phases. The CCE phase chapters take the reader on a more granular walkthrough of the methodology with examples from the field, phase objectives, and the steps to take in each phase. Concluding chapter 9 covers training options and looks towards a future where these concepts are scaled more broadly.
The Smart Grid has the potential to revolutionize electricity delivery systems, and the security of its infrastructure is a vital concern not only for cyber-security practitioners, engineers, policy makers, and utility executives, but also for the media and consumers. Smart Grid Security: An End-to-End View of Security in the New Electrical Grid explores the important techniques, challenges, and forces that will shape how we achieve a secure twenty-first century electric grid. Includes a Foreword by Michael Assante, President and CEO, National Board of Information Security Examiners Following an overview of the components of the Smart Grid, the book delves into the evolution of security standards and regulations and examines ways in which the Smart Grid might be regulated. The authors discuss the technical details about how metering technology is being implemented and the likely threats and vulnerabilities that utilities will face. They address the home area network (HAN) and examine distribution and transmission—the foundation for the delivery of electricity, along with distributed generation, micro-grids, and operations. The book explores future concepts—such as energy storage and the use of plug-in electric vehicles (PEVs)—in addition to the concomitant risk for fraud and manipulation with stored energy. Consumer-related issues are discussed as they pertain to emerging ways of receiving and generating energy. The book examines dysfunctions ranging from inadvertent outages to cyber-attack and presents recommendations on how to respond to these incidents. It concludes with speculation of future cyber-security challenges and discusses new ways that the grid can be defended, such as better key management and protection. Written in a style rigorous enough for the practitioner yet accessible to a broad audience, this comprehensive volume covers a topic that is becoming more critical to industry and consumers everywhere.