Download Free Power System Static State Estimation With Phasor Measurements Book in PDF and EPUB Free Download. You can read online Power System Static State Estimation With Phasor Measurements and write the review.

State estimation is one of the most important functions in power system operation and control. This area is concerned with the overall monitoring, control, and contingency evaluation of power systems. It is mainly aimed at providing a reliable estimate of system voltages. State estimator information flows to control centers, where critical decisions are made concerning power system design and operations. This valuable resource provides thorough coverage of this area, helping professionals overcome challenges involving system quality, reliability, security, stability, and economy. Engineers are introduced to new techniques for their work in the field, including current measurements and phasor measurement units. Moreover, the book includes a novel discussion on state estimation for distributed systems. Professionals find expert guidance for their current projects and discover cutting-edge developments that will help prepare them for work with future energy management systems.
Offering an up-to-date account of the strategies utilized in state estimation of electric power systems, this text provides a broad overview of power system operation and the role of state estimation in overall energy management. It uses an abundance of examples, models, tables, and guidelines to clearly examine new aspects of state estimation, the testing of network observability, and methods to assure computational efficiency. Includes numerous tutorial examples that fully analyze problems posed by the inclusion of current measurements in existing state estimators and illustrate practical solutions to these challenges. Written by two expert researchers in the field, Power System State Estimation extensively details topics never before covered in depth in any other text, including novel robust state estimation methods, estimation of parameter and topology errors, and the use of ampere measurements for state estimation. It introduces various methods and computational issues involved in the formulation and implementation of the weighted least squares (WLS) approach, presents statistical tests for the detection and identification of bad data in system measurements, and reveals alternative topological and numerical formulations for the network observability problem.
A guide to the role of static state estimation in the mitigation of potential system failures With contributions from a noted panel of experts on the topic, Advances in Electric Power and Energy: Static State Estimation addresses the wide-range of issues concerning static state estimation as a main energy control function and major tool for evaluating prevailing operating conditions in electric power systems worldwide. This book is an essential guide for system operators who must be fully aware of potential threats to the integrity of their own and neighboring systems. The contributors provide an overview of the topic and review common threats such as cascading black-outs to model-based anomaly detection to the operation of micro-grids and much more. The book also includes a discussion of an effective mathematical programming approach to state estimation in power systems. Advances in Electric Power and Energy reviews the most recent developments in the field and: Offers an introduction to the topic to help non-experts (and professionals) get up-to-date on static state estimation Covers the essential information needed to understand power system state estimation written by experts on the subject Discusses a mathematical programming approach Written for electric power system planners, operators, consultants, power system software developers, and academics, Advances in Electric Power and Energy is the authoritative guide to the topic with contributions from experts who review the most recent developments.
Wide-area monitoring for the power system is a key tool for preventing the power system from system wide failure. State Estimation (SE) is an essential and practical monitoring tool that has been widely used to provide estimated values for each quantity within energy management systems (EMS) in the control center. However, monitoring larger power systems coordinated by regional transmission operators has placed an enormous operational burden on current SE techniques. A distributed state estimation (DSE) algorithm with a hierarchical structure designed for the power system industry is much more computationally efficient and robust especially for monitoring a wide-area power system. Moreover, considering the deregulation of the power system industry, this method does not require sensitive data exchange between smaller areas that may be competing entities. The use of phasor measurement units (PMUs) in the SE algorithm has proven to improve the performance in terms of accuracy and converging speed. Being able to synchronize the measurements between different areas, PMUs are perfectly suited for distributed state estimation. This dissertation investigates the benefits of the DSE using PMU over a serial state estimator in wide area monitoring. A new method has been developed using available PMU data to calculate the reference angle differences between decomposed power systems in various situations, such as when the specific PMU data of the global slack bus cannot be obtained. The algorithms were tested on six bus, IEEE standard 30 bus and IEEE 118-bus test cases. The proposed distributed state estimator has also been implemented in a test bed to work with a power system real-time digital simulator (RTDS) that simulates the physical power system. PMUs made by SEL and GE are used to provide real-time inputs to the distributed state estimator. Simulation results demonstrated the benefits of the PMU and distributed SE techniques. Additionally a constructed test bed verified and validated the proposed algorithms and can be used for different smart grid tests.
The use of advanced technologies has made it possible to transform the power grid to an intelligent smart grid with real time control and monitoring of the system. The development of Phasor Measurement Units (PMUs) and the resulting possibility of real time measurements has enabled different power system applications to enhance the stability, state estimation, load estimation, power network protection, Wide-Area Security Assessment and reliability of the power grid.
This book builds on the cutting edge research presented in the previous edition that was the first of its kind to present the technology behind an emerging power systems management tool still in the early stages of commercial roll-out. In the intervening years, synchrophasors have become a crucial and widely adopted tool in the battle against electricity grid failures around the world. Still the most accurate wide area measurement (WAMS) technology for power systems, synchronized phasor measurements have become increasingly sophisticated and useful for system monitoring, as the advent of big data storage allows for more nuanced real-time analysis, allowing operators to predict, prevent and mitigate the impacts of blackouts with enhanced accuracy and effectiveness. This new edition continues to provide the most encompassing overview of the technology from its pioneers, and has been expanded and updated to include all the applications and optimizations of the last decade.
Mots-clés de l'auteur: power system state estimation ; linear state estimation ; phasor measurement unit PMU ; synchrophasor ; weighted least squares ; least absolute value ; adaptive Kalman filter ; covariance estimation ; zero injection equality constraints ; fault location.