Download Free Power Plant Performance Monitoring Book in PDF and EPUB Free Download. You can read online Power Plant Performance Monitoring and write the review.

This report extends the application of on-line monitoring to equipment and process condition monitoring, encompassing an array of technologies including vibration monitoring, acoustic monitoring, loose parts monitoring, motor current signature analysis and noise diagnostics, as well as vibration analysis of the reactor core and the primary circuit. Furthermore, this report includes the application of modeling technologies for equipment and process condition monitoring. A majority of these technologies depend on existing data from existing sensors and first principles models to estimate equipment and process behavior using empirical and physical modeling techniques. In doing so, pattern recognition tools such as neural networks, fuzzy classification of data, multivariate state estimation and other means are used. These means are described in the report, and examples of their application and implementation are provided. The benefits of OLM for performance verification of process instruments were described in the first report and included such advantages as the ability to extend the calibration interval of pressure, level and flow transmitters, detection of blockages, voids and leaks in pressure sensing lines, detection of degradation of the dynamic response of process instruments, and the like. Examples of benefits of OLM for condition monitoring include: (1) the ability to determine the onset of failure of pumps, valves, motors and reactor vessel components; (2) residual life assessment of equipment; (3) equipment life extension and aging management; (4) the ability to establish objective schedules for preventive maintenance, equipment refurbishment or replacement; and (5) maintenance cost reduction, efficiency improvements, reduction of plant outages, and reduction of radiation exposure to plant personnel.--Publisher's description.
An exploration of how advances in computing technology and research can be combined to extend the capabilities and economics of modern power plants. The contributors, from academia as well as practising engineers, illustrate how the various methodologies can be applied to power plant operation.
Power Plant Performance discusses the different procedures and practices involved in the operation of power plants. The book is divided into four parts. Part I covers general considerations such as steam cycles; the sampling, analysis, and assessment of coal; and pumping – its related terms, the different types of pumps, and the determination of sizes and efficiency. Part II tackles the important measurements in power plants such as temperature, pressure, and gas and water flow. Part III deals with the operation of power plant components such as the boiler, turbine, and condensers. Part IV tackles other related topics such as steam turbine heat consumption tests; plant-operating parameters; and the costs of outages. The text is recommended for professionals involved in the development, maintenance, and operation of power plants, especially those who would like to be familiar with the basics.
The four-volume set LNAI 6881-LNAI 6884 constitutes the refereed proceedings of the 15th International Conference on Knowledge-Based Intelligent Information and Engineering Systems, KES 2011, held in Kaiserslautern, Germany, in September 2011. Part 1: The total of 244 high-quality papers presented were carefully reviewed and selected from numerous submissions. The 61 papers of Part 1 are organized in topical sections on artificial neural networks, connectionists systems and evolutionary computation, machine learning and classical AI, agent, multi-agentsystems, knowledge based and expert systems, intelligent vision, image processing and signal processing, knowledge management, ontologies, and data mining.
Since first AC current high-power hydropower plant was put in operation, built by Nikola Tesla and George Westinghouse in 1895 on Niagara Falls, electrification of the world has dramatically changed. The growing power demand and energy consumption in the last decades require fundamental changes in the process, power production, and services. These requirements tend to use both conventional and nonconventional energy generation in order to have power plants economically useful and environmentally friendly to the society. The goal of this textbook is to provide an up-to-date review of this important topic with specific emphasis on the current guidelines for improving overall efficiency, lowering emissions, and using large share of renewable energy.
Written for the plant engineer, this book shows how to apply condition monitoring by performance analysis to steam turbines. Its aim is to assist to assist with performance problem solving and in decision making on steam turbine maintenance.