Download Free Power Orthogonal Polynomials Book in PDF and EPUB Free Download. You can read online Power Orthogonal Polynomials and write the review.

The first chapter lists the basic results of orthogonal polynomials, Jacobi, Laguerre, and Hermite polynomials, and collects some frequently used theorems and formulas. As a base and useful tool, the representation and quantitative theory of Hermite interpolation is the subject of Chapter 2. The theory of power orthogonal polynomials begins in Chapter 3: existence, uniqueness, Characterisations, properties of zeros, and continuity with respect to the measure and the indices are all considered. Chapter 4 deals with Gaussian quadrature formulas and their convergence. Chapter 5 is devoted to the theory of Christo®el type functions, which are related to Gaussian quadrature formulas and is one of the important contents of power orthogonal polynomials. The explicit representation of power orthogonal polynomials is an interesting problem and is discussed in Chapter 6. Chapter 7 is a detailed treatment of zeros in power orthogonal polynomials. Chapter 8 is devoted to bounds and inequalities of power orthogonal polynomials. In Chapters 9 and 10 we study asymptotics of general polynomials and power orthogonal polynomials, respectively. In Chapter 11 we discuss convergence of power orthogonal series, Lagrange and Hermite interpolation, and two positive operators constructed by power orthogonal polynomials. In Chapter 12 we investigate Gaussian quadrature formulas for extended Chebyshev spaces. In Chapter 13 we give construction methods for power orthogonal polynomials and Gaussian quadrature formulas; we also provide numerical results and numerical tables.
The general theory of orthogonal polynomials was developed in the late 19th century from a study of continued fractions by P. L. Chebyshev, even though special cases were introduced earlier by Legendre, Hermite, Jacobi, Laguerre, and Chebyshev himself. It was further developed by A. A. Markov, T. J. Stieltjes, and many other mathematicians. The book by Szego, originally published in 1939, is the first monograph devoted to the theory of orthogonal polynomials and its applications in many areas, including analysis, differential equations, probability and mathematical physics. Even after all the years that have passed since the book first appeared, and with many other books on the subject published since then, this classic monograph by Szego remains an indispensable resource both as a textbook and as a reference book. It can be recommended to anyone who wants to be acquainted with this central topic of mathematical analysis.
The first modern treatment of orthogonal polynomials from the viewpoint of special functions is now available in paperback.
This book presents contributions of international and local experts from the African Institute for Mathematical Sciences (AIMS-Cameroon) and also from other local universities in the domain of orthogonal polynomials and applications. The topics addressed range from univariate to multivariate orthogonal polynomials, from multiple orthogonal polynomials and random matrices to orthogonal polynomials and Painlevé equations. The contributions are based on lectures given at the AIMS-Volkswagen Stiftung Workshop on Introduction of Orthogonal Polynomials and Applications held on October 5–12, 2018 in Douala, Cameroon. This workshop, funded within the framework of the Volkswagen Foundation Initiative "Symposia and Summer Schools", was aimed globally at promoting capacity building in terms of research and training in orthogonal polynomials and applications, discussions and development of new ideas as well as development and enhancement of networking including south-south cooperation.
Ludwig Faddeev is widely recognized as one of the titans of 20th century mathematical physics. His fundamental contributions to scattering theory, quantum gauge theories, and the theory of classical and quantum completely integrable systems played a key role in shaping modern mathematical physics. Ludwig Faddeev's major achievements include the solution of the three-body problem in quantum mechanics, the mathematical formulation of quantum gauge theories and corresponding Feynman rules, Hamiltonian and algebraic methods in mathematical physics, with applications to gauge theories with anomalies, quantum systems with constraints and solitons, the discovery of the algebraic structure of classical and quantum integrable systems and quantum groups, and solitons with the topology of knots. Faddeev's name is imprinted in many areas of mathematics and theoretical physics, including "Faddeev's equations" and "Faddeev's Green function" in scattering theory, "Faddeev-Popov ghosts" and "Faddeev-Popov determinant" in gauge theories, "Gardner-Faddeev-Zakharov bracket" for the KdV equation, "Faddeev-Zamolodchikov algebra" in quantum integrable systems, "Faddeev-Reshetikhin-Takhtajan construction" in the theory of quantum groups, knotted solitons in the "Skyrme-Faddeev model" and many others. Ludwig Faddeev founded the St. Petersburg school of modern mathematical physics and distinguished himself by serving the mathematics community for over three decades including his leadership of the International Mathematical Union in the period of 1986-1990. He was conferred numerous prizes and memberships of prestigious institutions in recognition of the importance of his work. These include the Dannie Heineman Prize for Mathematical Physics, the Dirac Medal, the Max Planck Medal, the Shaw Prize and the Lomonosov Gold Medal among others. A gathering of contributions from some of the biggest names in mathematics and physics, this volume serves as a tribute to this legendary figure. Volume contributors include: Fields medalist Sir Michael Atiyah, Jürg Fröhlich, Roman Jackiw, Vladimir Korepin, Nikita Nekrasov, André Neveu, Alexander M Polyakov, Samson Shatashvili, Fedor Smirnov as well as Nobel laureates Frank Wilczek and C N Yang.
This volume presents the idea that one studies orthogonal polynomials and special functions to use them to solve problems.
"This concise introduction covers general elementary theory related to orthogonal polynomials and assumes only a first undergraduate course in real analysis. Topics include the representation theorem and distribution functions, continued fractions and chain sequences, the recurrence formula and properties of orthogonal polynomials, special functions, and some specific systems of orthogonal polynomials. 1978 edition"--
This text illustrates the fundamental simplicity of the properties of orthogonal functions and their developments in related series. Begins with a definition and explanation of the elements of Fourier series, and examines Legendre polynomials and Bessel functions. Also includes Pearson frequency functions and chapters on orthogonal, Jacobi, Hermite, and Laguerre polynomials, more. 1941 edition.
The analysis of orthogonal polynomials associated with general weights was a major theme in classical analysis in the twentieth century and undoubtedly will continue to grow in importance in the future. In this monograph, the authors investigate orthogonal polynomials for exponential weights defined on a finite or infinite interval. The interval should contain 0, but need not be symmetric about 0 ; likewise, the weight need not be even. The authors establish bounds and asymptotics for orthonormal and extremal polynomials, and their associated Christoffel functions. They deduce bounds on zeros of extremal and orthogonal polynomials, and also establish Markov-Bernstein and Nikolskii inequalities. The book will be of interest to researchers in approximation theory, harmonic analysis, numerical analysis, potential theory, and all those that apply orthogonal polynomials.
This volume contains the Proceedings of the NATO Advanced Study Institute on "Orthogonal Polynomials and Their Applications" held at The Ohio State University in Columbus, Ohio, U.S.A. between May 22,1989 and June 3,1989. The Advanced Study Institute primarily concentrated on those aspects of the theory and practice of orthogonal polynomials which surfaced in the past decade when the theory of orthogonal polynomials started to experience an unparalleled growth. This progress started with Richard Askey's Regional Confer ence Lectures on "Orthogonal Polynomials and Special Functions" in 1975, and subsequent discoveries led to a substantial revaluation of one's perceptions as to the nature of orthogonal polynomials and their applicability. The recent popularity of orthogonal polynomials is only partially due to Louis de Branges's solution of the Bieberbach conjecture which uses an inequality of Askey and Gasper on Jacobi polynomials. The main reason lies in their wide applicability in areas such as Pade approximations, continued fractions, Tauberian theorems, numerical analysis, probability theory, mathematical statistics, scattering theory, nuclear physics, solid state physics, digital signal processing, electrical engineering, theoretical chemistry and so forth. This was emphasized and convincingly demonstrated during the presentations by both the principal speakers and the invited special lecturers. The main subjects of our Advanced Study Institute included complex orthogonal polynomials, signal processing, the recursion method, combinatorial interpretations of orthogonal polynomials, computational problems, potential theory, Pade approximations, Julia sets, special functions, quantum groups, weighted approximations, orthogonal polynomials associated with root systems, matrix orthogonal polynomials, operator theory and group representations.