Download Free Power Microelectronics Device And Process Technologies Second Edition Book in PDF and EPUB Free Download. You can read online Power Microelectronics Device And Process Technologies Second Edition and write the review.

'This is an excellent reference book for graduates or undergraduates studying semiconductor technology, or for working professionals who need a reference for detailed theory and working knowledge of processes in the field of power semiconductor devices.'IEEE Electrical Insulation MagazineThis descriptive textbook provides a clear look at the theories and process technologies necessary for understanding the modern power semiconductor devices, i.e. from the fundamentals of p-n junction electrostatics, unipolar MOSFET and superjunction structures, bipolar IGBT, to the most recent wide bandgap SiC and GaN devices. It also covers their associated semiconductor process technologies. Real examples based on actual fabricated devices, with the process steps described in clear detail are especially useful. This book is suitable for university courses on power semiconductor or power electronic devices. Device designers and researchers will also find this book a good reference in their work, especially for those focusing on the advanced device development and design aspects.
This descriptive textbook provides an in-depth look at the theories and process technologies necessary for understanding modern power semiconductor devices, i.e. from the fundamentals of junction electrostatics, p-n junction devices, unipolar MOSFET, bipolar IGBT, and superjunction devices to their associated silicon wafer process technology. State-of-the-art devices based on current research and development are included in the book to widen the scope for future device generation. The detailed structure and performance merit of the devices are also presented, together with laboratory measurements and SEM photographs. Examples used in the book are based mainly on actual fabricated devices, with the process steps described in clear detail. This book is useful for senior-year undergraduate courses on power semiconductor or power electronic devices, as well as for graduate-level courses, especially those focusing on advanced device development and design aspects. Device designers and researchers will also find this book a good reference in their work.
"This descriptive textbook provides a clear look at the theories and process technologies necessary for understanding the modern power semiconductor devices, i.e. from the fundamentals of p-n junction electrostatics, unipolar MOSFET and superjunction structures, bipolar IGBT, to the most recent wide bandgap SiC and GaN devices. It also covers their associated semiconductor process technologies. Real examples based on actual fabricated devices, with the process steps described in clear detail are especially useful. This book is suitable for university courses on power semiconductor or power electronic devices. Device designers and researchers will also find this book a good reference in their work, especially for those focusing on the advanced device development and design aspects."--Publisher's website.
The second edition of this introductory book sets out clearly and concisely the principles of operation of the semiconductor devices that lie at the heart of the microelectronic revolution.The book aims to teach the reader how semiconductor devices are modelled. It begins by providing a firm background in the relevant semiconductor physics. These ideas are then used to construct both circuit models and mathematical models for diodes, bipolar transistors and MOSFETs. It also describes the processes involved in fabricating silicon chips containing these devices.The first edition has already proved a highly useful textbook to first and second year degree students in electrical and electronic engineering, and related disciplines. It is also useful to HND students in similar subject areas, and as supplementary reading for anyone involved in integrated circuit design and fabrication./a
The Guide to Semiconductor Engineering is concerned with semiconductor materials, devices and process technologies which in combination constitute an enabling force behind the growth of our technical civilization. This book was conceived and written keeping in mind those who need to learn about semiconductors, who are professionally associated with select aspects of this technical domain and want to see it in a broader context, or for those who are simply interested in state-of-the-art semiconductor engineering. In its coverage of semiconductor properties, materials, devices, manufacturing technology, and characterization methods, this Guide departs from textbook-style, monothematic in-depth discussions of each topic. Instead, it considers the entire broad field of semiconductor technology and identifies synergistic interactions within various areas in one concise volume. It is a holistic approach to the coverage of semiconductor engineering which distinguishes this Guide among other books concerned with semiconductors related issues.
This book constitutes selected papers from the Second International Conference on Microelectronic Devices, Circuits and Systems, ICMDCS 2021, held in Vellore, India, in February 2021. The 32 full papers and 6 short papers presented were thoroughly reviewed and selected from 103 submissions. They are organized in the topical sections on ​digital design for signal, image and video processing; VLSI testing and verification; emerging technologies and IoT; nano-scale modelling and process technology device; analog and mixed signal design; communication technologies and circuits; technology and modelling for micro electronic devices; electronics for green technology.
When it comes to electronics, demand grows as technology shrinks. From consumer and industrial markets to military and aerospace applications, the call is for more functionality in smaller and smaller devices. Culled from the second edition of the best-selling Electronics Handbook, Microelectronics, Second Edition presents a summary of the current state of microelectronics and its innovative directions. This book focuses on the materials, devices, and applications of microelectronics technology. It details the IC design process and VLSI circuits, including gate arrays, programmable logic devices and arrays, parasitic capacitance, and transmission line delays. Coverage ranges from thermal properties and semiconductor materials to MOSFETs, digital logic families, memory devices, microprocessors, digital-to-analog and analog-to-digital converters, digital filters, and multichip module technology. Expert contributors discuss applications in machine vision, ad hoc networks, printing technologies, and data and optical storage systems. The book also includes defining terms, references, and suggestions for further reading. This edition features two new sections on fundamental properties and semiconductor devices. With updated material and references in every chapter, Microelectronics, Second Edition is an essential reference for work with microelectronics, electronics, circuits, systems, semiconductors, logic design, and microprocessors.
Without plasma processing techniques, recent advances in microelectronics fabrication would not have been possible. But beyond simply enabling new capabilities, plasma-based techniques hold the potential to enhance and improve many processes and applications. They are viable over a wide range of size and time scales, and can be used for deposition,
In 1993, the first edition of The Electrical Engineering Handbook set a new standard for breadth and depth of coverage in an engineering reference work. Now, this classic has been substantially revised and updated to include the latest information on all the important topics in electrical engineering today. Every electrical engineer should have an opportunity to expand his expertise with this definitive guide. In a single volume, this handbook provides a complete reference to answer the questions encountered by practicing engineers in industry, government, or academia. This well-organized book is divided into 12 major sections that encompass the entire field of electrical engineering, including circuits, signal processing, electronics, electromagnetics, electrical effects and devices, and energy, and the emerging trends in the fields of communications, digital devices, computer engineering, systems, and biomedical engineering. A compendium of physical, chemical, material, and mathematical data completes this comprehensive resource. Every major topic is thoroughly covered and every important concept is defined, described, and illustrated. Conceptually challenging but carefully explained articles are equally valuable to the practicing engineer, researchers, and students. A distinguished advisory board and contributors including many of the leading authors, professors, and researchers in the field today assist noted author and professor Richard Dorf in offering complete coverage of this rapidly expanding field. No other single volume available today offers this combination of broad coverage and depth of exploration of the topics. The Electrical Engineering Handbook will be an invaluable resource for electrical engineers for years to come.