Download Free Power Estimation On Electronic System Level Using Linear Power Models Book in PDF and EPUB Free Download. You can read online Power Estimation On Electronic System Level Using Linear Power Models and write the review.

This book describes a flexible and largely automated methodology for adding the estimation of power consumption to high level simulations at the electronic system level (ESL). This method enables the inclusion of power consumption considerations from the very start of a design. This ability can help designers of electronic systems to create devices with low power consumption. The authors also demonstrate the implementation of the method, using the popular ESL language “SystemC”. This implementation enables most existing SystemC ESL simulations for power estimation with very little manual work. Extensive case-studies of a Network on Chip communication architecture and a dual-core application processor “ARM Cortex-A9” showcase the applicability and accuracy of the method to different types of electronic devices. The evaluation compares various trade-offs regarding amount of manual work, types of ESL models, achieved estimation accuracy and impact on the simulation speed. Describes a flexible and largely automated ESL power estimation method; Shows implementation of power estimation methodology in SystemC; Uses two extensive case studies to demonstrate method introduced.
This book constitutes the proceedings of the 33rd International Conference on Architecture of Computing Systems, ARCS 2020, held in Aachen, Germany, in May 2020.* The 12 full papers in this volume were carefully reviewed and selected from 33 submissions. 6 workshop papers are also included. ARCS has always been a conference attracting leading-edge research outcomes in Computer Architecture and Operating Systems, including a wide spectrum of topics ranging from embedded and real-time systems all the way to large-scale and parallel systems. The selected papers focus on concepts and tools for incorporating self-adaptation and self-organization mechanisms in high-performance computing systems. This includes upcoming approaches for runtime modifications at various abstraction levels, ranging from hardware changes to goal changes and their impact on architectures, technologies, and languages. *The conference was canceled due to the COVID-19 pandemic.
The International Workshop on Power and Timing Modeling, Optimization, and Simulation PATMOS 2002, was the 12th in a series of international workshops 1 previously held in several places in Europe. PATMOS has over the years evolved into a well-established and outstanding series of open European events on power and timing aspects of integrated circuit design. The increased interest, espe- ally in low-power design, has added further momentum to the interest in this workshop. Despite its growth, the workshop can still be considered as a very - cused conference, featuring high-level scienti?c presentations together with open discussions in a free and easy environment. This year, the workshop has been opened to both regular papers and poster presentations. The increasing number of worldwide high-quality submissions is a measure of the global interest of the international scienti?c community in the topics covered by PATMOS. The objective of this workshop is to provide a forum to discuss and inves- gate the emerging problems in the design methodologies and CAD-tools for the new generation of IC technologies. A major emphasis of the technical program is on speed and low-power aspects with particular regard to modeling, char- terization, design, and architectures. The technical program of PATMOS 2002 included nine sessions dedicated to most important and current topics on power and timing modeling, optimization, and simulation. The three invited talks try to give a global overview of the issues in low-power and/or high-performance circuit design.
The first of two volumes in the Electronic Design Automation for Integrated Circuits Handbook, Second Edition, Electronic Design Automation for IC System Design, Verification, and Testing thoroughly examines system-level design, microarchitectural design, logic verification, and testing. Chapters contributed by leading experts authoritatively discuss processor modeling and design tools, using performance metrics to select microprocessor cores for integrated circuit (IC) designs, design and verification languages, digital simulation, hardware acceleration and emulation, and much more. New to This Edition: Major updates appearing in the initial phases of the design flow, where the level of abstraction keeps rising to support more functionality with lower non-recurring engineering (NRE) costs Significant revisions reflected in the final phases of the design flow, where the complexity due to smaller and smaller geometries is compounded by the slow progress of shorter wavelength lithography New coverage of cutting-edge applications and approaches realized in the decade since publication of the previous edition—these are illustrated by new chapters on high-level synthesis, system-on-chip (SoC) block-based design, and back-annotating system-level models Offering improved depth and modernity, Electronic Design Automation for IC System Design, Verification, and Testing provides a valuable, state-of-the-art reference for electronic design automation (EDA) students, researchers, and professionals.
This book constitutes the refereed proceedings of the 10th International Workshop on Power and Timing Modeling, Optimization and Simulation, PATMOS 2000, held in Göttingen, Germany in September 2000. The 33 revised full papers presented were carefully reviewed and selected for inclusion in the book. The papers are organized in sections on RTL power modeling, power estimation and optimization, system-level design, transistor level design, asynchronous circuit design, power efficient technologies, design of multimedia processing applications, adiabatic design and arithmetic modules, and analog-digital circuit modeling.
​This book serves as a single-source reference to key machine learning (ML) applications and methods in digital and analog design and verification. Experts from academia and industry cover a wide range of the latest research on ML applications in electronic design automation (EDA), including analysis and optimization of digital design, analysis and optimization of analog design, as well as functional verification, FPGA and system level designs, design for manufacturing (DFM), and design space exploration. The authors also cover key ML methods such as classical ML, deep learning models such as convolutional neural networks (CNNs), graph neural networks (GNNs), generative adversarial networks (GANs) and optimization methods such as reinforcement learning (RL) and Bayesian optimization (BO). All of these topics are valuable to chip designers and EDA developers and researchers working in digital and analog designs and verification.
The second of two volumes in the Electronic Design Automation for Integrated Circuits Handbook, Second Edition, Electronic Design Automation for IC Implementation, Circuit Design, and Process Technology thoroughly examines real-time logic (RTL) to GDSII (a file format used to transfer data of semiconductor physical layout) design flow, analog/mixed signal design, physical verification, and technology computer-aided design (TCAD). Chapters contributed by leading experts authoritatively discuss design for manufacturability (DFM) at the nanoscale, power supply network design and analysis, design modeling, and much more. New to This Edition: Major updates appearing in the initial phases of the design flow, where the level of abstraction keeps rising to support more functionality with lower non-recurring engineering (NRE) costs Significant revisions reflected in the final phases of the design flow, where the complexity due to smaller and smaller geometries is compounded by the slow progress of shorter wavelength lithography New coverage of cutting-edge applications and approaches realized in the decade since publication of the previous edition—these are illustrated by new chapters on 3D circuit integration and clock design Offering improved depth and modernity, Electronic Design Automation for IC Implementation, Circuit Design, and Process Technology provides a valuable, state-of-the-art reference for electronic design automation (EDA) students, researchers, and professionals.
This book constitutes the refereed proceedings of the 8th International Workshop on Field-Programmable Logics and Applications, FPL '98, held in Tallinn, Estonia, in August/September 1998. The 39 revised full papers presented were carefully selected for inclusion in the book from a total of 86 submissions. Also included are 30 refereed high-quality posters. The papers are organized in topical sections on design methods, general aspects, prototyping and simulation, development methods, accelerators, system architectures, hardware/software codesign, system development, algorithms on FPGAs, and applications.
This proceedings brings together 59 selected articles presented at the joint conferences of the International Conference on Management, Information and Communication (ICMIC2016) and the International Conference on Optics and Electronics Engineering (ICOEE2016), which were held in Guilin, China, during May 28-29, 2016.ICMIC2016 and ICOEE2016 provide a platform for researchers, engineers, academicians as well as industrial professionals from all over the world to present their latest findings and results in the development in Information Management, Communication, Optics and Electronics host by ICMIC2016 and ICOEE2016.The proceedings collected the latest research results and applications in the related areas. We hope to enlighten readers with some latest developments in Information Management, and Optics Electronics presented at the joint conferences.
This book brings together a selection of the best papers from the seventeenth edition of the Forum on specification and Design Languages Conference (FDL), which took place on October 14-16, 2014, in Munich, Germany. FDL is a well-established international forum devoted to dissemination of research results, practical experiences and new ideas in the application of specification, design and verification languages to the design, modeling and verification of integrated circuits, complex hardware/software embedded systems, and mixed-technology systems.