Download Free Power Electronic Converters Modeling And Control Book in PDF and EPUB Free Download. You can read online Power Electronic Converters Modeling And Control and write the review.

Modern power electronic converters are involved in a very broad spectrum of applications: switched-mode power supplies, electrical-machine-motion-control, active power filters, distributed power generation, flexible AC transmission systems, renewable energy conversion systems and vehicular technology, among them. Power Electronics Converters Modeling and Control teaches the reader how to analyze and model the behavior of converters and so to improve their design and control. Dealing with a set of confirmed algorithms specifically developed for use with power converters, this text is in two parts: models and control methods. The first is a detailed exposition of the most usual power converter models: · switched and averaged models; · small/large-signal models; and · time/frequency models. The second focuses on three groups of control methods: · linear control approaches normally associated with power converters; · resonant controllers because of their significance in grid-connected applications; and · nonlinear control methods including feedback linearization, stabilizing, passivity-based, and variable-structure control. Extensive case-study illustration and end-of-chapter exercises reinforce the study material. Power Electronics Converters Modeling and Control addresses the needs of graduate students interested in power electronics, providing a balanced understanding of theoretical ideas coupled with pragmatic tools based on control engineering practice in the field. Academics teaching power electronics will find this an attractive course text and the practical points make the book useful for self tuition by engineers and other practitioners wishing to bring their knowledge up to date.
Modeling and Control of Power Electronics Converter Systems for Power Quality Improvements provides grounded theory for the modeling, analysis and control of different converter topologies that improve the power quality of mains. Intended for researchers and practitioners working in the field, topics include modeling equations and the state of research to improve power quality converters. By presenting control methods for different converter topologies and aspects related to multi-level inverters and specific analysis related to the AC interface of drives, the book helps users by putting a particular emphasis on different control algorithms that enhance knowledge and research work. Present In-depth coverage of modeling and control methods for different converter topology Includes a particular emphasis on different control algorithms to give readers an easier understanding Provides a results and discussion chapter and MATLAB simulation to support worked examples and real-life application scenarios
This book covers the fundamentals of power electronic converter modeling and control, digital simulation, and experimental studies in the area of renewable energy systems and AC/DC microgrid. Recent advanced control methods for voltage source inverters (VSIs) and the hierarchical controlled islanded microgrid are discussed, including the mathematical modeling, controller synthesis, parameter selection and multi-scale stability analysis, and consensus-based control strategies for the microgrid and microgrid clusters. The book will be an invaluable technical reference for practicing engineers and researchers working in the areas of renewable energy, power electronics, energy internet, and smart grid. It can also be utilized as reference book for undergraduate and postgraduate students in electrical engineering.
Filling the need for a reference that explains the behavior of power electronic converters, this book provides information currently unavailable in similar texts on power electronics. Clearly organized into four parts, the first treats the dynamics and control of conventional converters, while the second part covers the dynamics and control of DC-DC converters in renewable energy applications, including an introduction to the sources as well as the design of current-fed converters applying duality-transformation methods. The third part treats the dynamics and control of three-phase rectifiers in voltage-sourced applications, and the final part looks at the dynamics and control of three-phase inverters in renewable-energy applications. With its future-oriented perspective and advanced, first-hand knowledge, this is a prime resource for researchers and practicing engineers needing a ready reference on the design and control of power electronic converters.
Presents Fundamentals of Modeling, Analysis, and Control of Electric Power Converters for Power System Applications Electronic (static) power conversion has gained widespread acceptance in power systems applications; electronic power converters are increasingly employed for power conversion and conditioning, compensation, and active filtering. This book presents the fundamentals for analysis and control of a specific class of high-power electronic converters—the three-phase voltage-sourced converter (VSC). Voltage-Sourced Converters in Power Systems provides a necessary and unprecedented link between the principles of operation and the applications of voltage-sourced converters. The book: Describes various functions that the VSC can perform in electric power systems Covers a wide range of applications of the VSC in electric power systems—including wind power conversion systems Adopts a systematic approach to the modeling and control design problems Illustrates the control design procedures and expected performance based on a comprehensive set of examples and digital computer time-domain simulation studies This comprehensive text presents effective techniques for mathematical modeling and control design, and helps readers understand the procedures and analysis steps. Detailed simulation case studies are included to highlight the salient points and verify the designs. Voltage-Sourced Converters in Power Systems is an ideal reference for senior undergraduate and graduate students in power engineering programs, practicing engineers who deal with grid integration and operation of distributed energy resource units, design engineers, and researchers in the area of electric power generation, transmission, distribution, and utilization.
Control of Power Electronic Converters and Systems examines the theory behind power electronic converter control, including operation, modeling and control of basic converters. The book explores how to manipulate components of power electronics converters and systems to produce a desired effect by controlling system variables. Advances in power electronics enable new applications to emerge and performance improvement in existing applications. These advances rely on control effectiveness, making it essential to apply appropriate control schemes to the converter and system to obtain the desired performance. - Discusses different applications and their control - Explains the most important controller design methods both in analog and digital - Describes different important applications to be used in future industrial products - Covers voltage source converters in significant detail - Demonstrates applications across a much broader context
In this book, nine papers focusing on different fields of power electronics are gathered, all of which are in line with the present trends in research and industry. Given the generality of the Special Issue, the covered topics range from electrothermal models and losses models in semiconductors and magnetics to converters used in high-power applications. In this last case, the papers address specific problems such as the distortion due to zero-current detection or fault investigation using the fast Fourier transform, all being focused on analyzing the topologies of high-power high-density applications, such as the dual active bridge or the H-bridge multilevel inverter. All the papers provide enough insight in the analyzed issues to be used as the starting point of any research. Experimental or simulation results are presented to validate and help with the understanding of the proposed ideas. To summarize, this book will help the reader to solve specific problems in industrial equipment or to increase their knowledge in specific fields.
Discusses the application of mathematical and engineering tools for modeling, simulation and control oriented for energy systems, power electronics and renewable energy This book builds on the background knowledge of electrical circuits, control of dc/dc converters and inverters, energy conversion and power electronics. The book shows readers how to apply computational methods for multi-domain simulation of energy systems and power electronics engineering problems. Each chapter has a brief introduction on the theoretical background, a description of the problems to be solved, and objectives to be achieved. Block diagrams, electrical circuits, mathematical analysis or computer code are covered. Each chapter concludes with discussions on what should be learned, suggestions for further studies and even some experimental work. Discusses the mathematical formulation of system equations for energy systems and power electronics aiming state-space and circuit oriented simulations Studies the interactions between MATLAB and Simulink models and functions with real-world implementation using microprocessors and microcontrollers Presents numerical integration techniques, transfer-function modeling, harmonic analysis and power quality performance assessment Examines existing software such as, MATLAB/Simulink, Power Systems Toolbox and PSIM to simulate power electronic circuits including the use of renewable energy sources such as wind and solar sources The simulation files are available for readers who register with the Google Group: power-electronics-interfacing-energy-conversion-systems@googlegroups.com. After your registration you will receive information in how to access the simulation files, the Google Group can also be used to communicate with other registered readers of this book.
This book provides an overview of power electronic converters for numerical simulations based on DIgSILENT PowerFactory. It covers the working principles, key assumptions and implementation of models of different types of these power systems. The book is divided into three main parts: the first discusses high-voltage direct currents, while the second part examines distribution systems and micro-grids. Lastly, the third addresses the equipment and technologies used in modelling and simulation. Each chapter includes practical examples and exercises, and the accompanying software illustrates essential models, principles and performance using DIgSILENT PowerFactory. Exploring various current topics in the field of modelling power systems, this book will appeal to a variety of readers, ranging from students to practitioners.
The increased efficiency and quality constraints imposed on electrical energy systems have inspired a renewed research interest in the study of formal approaches to the analysis and control of power electronics converters. Switched systems represent a useful framework for modeling these converters and the peculiarities of their operating conditions and control goals justify the specific classification of “switched electronic systems”. Indeed, idealized switched models of power converters introduce problems not commonly encountered when analyzing generic switched models or non-switched electrical networks. In that sense the analysis of switched electronic systems represents a source for new ideas and benchmarks for switched and hybrid systems generally. Dynamics and Control of Switched Electronic Systems draws on the expertise of an international group of expert contributors to give an overview of recent advances in the modeling, simulation and control of switched electronic systems. The reader is provided with a well-organized source of references and a mathematically-based report of the state of the art in analysis and design techniques for switched power converters. Intuitive language, realistic illustrative examples and numerical simulations help the reader to come to grips with the rigorous presentation of many promising directions of research such as: converter topologies and modulation techniques; continuous-time, discrete-time and hybrid models; modern control strategies for power converters; and challenges in numerical simulation. The guidance and information imparted in this text will be appreciated by engineers, and applied mathematicians working on system and circuit theory, control systems development, and electronic and energy conversion systems design.