Download Free Power Analysis And Optimization In Vlsi Circuits And Systems Book in PDF and EPUB Free Download. You can read online Power Analysis And Optimization In Vlsi Circuits And Systems and write the review.

Covers the statistical analysis and optimization issues arising due to increased process variations in current technologies. Comprises a valuable reference for statistical analysis and optimization techniques in current and future VLSI design for CAD-Tool developers and for researchers interested in starting work in this very active area of research. Written by author who lead much research in this area who provide novel ideas and approaches to handle the addressed issues
High-Level Power Analysis and Optimization presents a comprehensive description of power analysis and optimization techniques at the higher (architecture and behavior) levels of the design hierarchy, which are often the levels that yield the most power savings. This book describes power estimation and optimization techniques for use during high-level (behavioral synthesis), as well as for designs expressed at the register-transfer or architecture level. High-Level Power Analysis and Optimization surveys the state-of-the-art research on the following topics: power estimation/macromodeling techniques for architecture-level designs, high-level power management techniques, and high-level synthesis optimizations for low power. High-Level Power Analysis and Optimization will be very useful reading for students, researchers, designers, design methodology developers, and EDA tool developers who are interested in low-power VLSI design or high-level design methodologies.
Recent years have seen rapid strides in the level of sophistication of VLSI circuits. On the performance front, there is a vital need for techniques to design fast, low-power chips with minimum area for increasingly complex systems, while on the economic side there is the vastly increased pressure of time-to-market. These pressures have made the use of CAD tools mandatory in designing complex systems. Timing Analysis and Optimization of Sequential Circuits describes CAD algorithms for analyzing and optimizing the timing behavior of sequential circuits with special reference to performance parameters such as power and area. A unified approach to performance analysis and optimization of sequential circuits is presented. The state of the art in timing analysis and optimization techniques is described for circuits using edge-triggered or level-sensitive memory elements. Specific emphasis is placed on two methods that are true sequential timing optimizations techniques: retiming and clock skew optimization. Timing Analysis and Optimization of Sequential Circuits covers the following topics: Algorithms for sequential timing analysis Fast algorithms for clock skew optimization and their applications Efficient techniques for retiming large sequential circuits Coupling sequential and combinational optimizations. Timing Analysis and Optimization of Sequential Circuits is written for graduate students, researchers and professionals in the area of CAD for VLSI and VLSI circuit design.
Integrated circuit densities and operating speeds continue to rise at an exponential rate. Chips, however, cannot get larger and faster without a sharp decrease in power consumption beyond the current levels. Minimization of power consumption in VLSI chips has thus become an important design objective. In fact, with the explosive growth in demand for portable electronics and the usual push toward more complex functionality and higher performance, power consumption has in many cases become the limiting factor in satisfying the market demand. A new generation of power-conscious CAD tools are coming onto the market to help designers estimate, optimize and verify power consumption levels at most stages of the IC design process. These tools are especially prevalent at the register-transfer level and below. There is a great need for similar tools and capabilities at the behavioral and system levels of the design process. Many researchers and CAD tool developers are working on high-level power modeling and estimation, as well as power-constrained high-level synthesis and optimization. Techniques and tools alone are, however, insufficient to optimize VLSI circuit power dissipation - a consistent and convergent design methodology is also required. Power Optimization and Synthesis at Behavioral and System Levels Using Formal Methods was written to address some of the key problems in power analysis and optimization early in the design process. In particular, this book focuses on power macro-modeling based on regression analysis and power minimization through behavioral transformations, scheduling, resource assignment and hardware/software partitioning and mapping. What differentiates this book from other published work on the subject is the mathematical basis and formalism behind the algorithms and the optimality of these algorithms subject to the stated assumptions. From the Foreword: `This book makes an important contribution to the field of system design technologies by presenting a set of algorithms with guaranteed optimality properties, that can be readily applied to system-level design. This contribution is timely, because it fills the need of new methods for a new design tool generation, which supports the design of electronic systems with even more demanding requirements'. Giovanni De Micheli, Professor, Stanford University
Practical Low Power Digital VLSI Design emphasizes the optimization and trade-off techniques that involve power dissipation, in the hope that the readers are better prepared the next time they are presented with a low power design problem. The book highlights the basic principles, methodologies and techniques that are common to most CMOS digital designs. The advantages and disadvantages of a particular low power technique are discussed. Besides the classical area-performance trade-off, the impact to design cycle time, complexity, risk, testability and reusability are discussed. The wide impacts to all aspects of design are what make low power problems challenging and interesting. Heavy emphasis is given to top-down structured design style, with occasional coverage in the semicustom design methodology. The examples and design techniques cited have been known to be applied to production scale designs or laboratory settings. The goal of Practical Low Power Digital VLSI Design is to permit the readers to practice the low power techniques using current generation design style and process technology. Practical Low Power Digital VLSI Design considers a wide range of design abstraction levels spanning circuit, logic, architecture and system. Substantial basic knowledge is provided for qualitative and quantitative analysis at the different design abstraction levels. Low power techniques are presented at the circuit, logic, architecture and system levels. Special techniques that are specific to some key areas of digital chip design are discussed as well as some of the low power techniques that are just appearing on the horizon. Practical Low Power Digital VLSI Design will be of benefit to VLSI design engineers and students who have a fundamental knowledge of CMOS digital design.
Integrated circuit densities and operating speeds continue to rise at an exponential rate. Chips, however, cannot get larger and faster without a sharp decrease in power consumption beyond the current levels. Minimization of power consumption in VLSI chips has thus become an important design objective. In fact, with the explosive growth in demand for portable electronics and the usual push toward more complex functionality and higher performance, power consumption has in many cases become the limiting factor in satisfying the market demand. A new generation of power-conscious CAD tools are coming onto the market to help designers estimate, optimize and verify power consumption levels at most stages of the IC design process. These tools are especially prevalent at the register-transfer level and below. There is a great need for similar tools and capabilities at the behavioral and system levels of the design process. Many researchers and CAD tool developers are working on high-level power modeling and estimation, as well as power-constrained high-level synthesis and optimization. Techniques and tools alone are, however, insufficient to optimize VLSI circuit power dissipation - a consistent and convergent design methodology is also required. Power Optimization and Synthesis at Behavioral and System Levels Using Formal Methods was written to address some of the key problems in power analysis and optimization early in the design process. In particular, this book focuses on power macro-modeling based on regression analysis and power minimization through behavioral transformations, scheduling, resource assignment and hardware/software partitioning and mapping. What differentiates this book from other published work on the subject is the mathematical basis and formalism behind the algorithms and the optimality of these algorithms subject to the stated assumptions. From the Foreword: This book makes an important contribution to the field of system design technologies by presenting a set of algorithms with guaranteed optimality properties, that can be readily applied to system-level design. This contribution is timely, because it fills the need of new methods for a new design tool generation, which supports the design of electronic systems with even more demanding requirements'. Giovanni De Micheli, Professor, Stanford University
This volume features the refereed proceedings of the 17th International Workshop on Power and Timing Modeling, Optimization and Simulation. Papers cover high level design, low power design techniques, low power analog circuits, statistical static timing analysis, power modeling and optimization, low power routing optimization, security and asynchronous design, low power applications, modeling and optimization, and more.
This book constitutes the refereed proceedings of the 13th International Workshop on Power and Timing Modeling, Optimization and Simulation, PATMOS 2003, held in Torino, Italy in September 2003. The 43 revised full papers and 18 revised poster papers presented together with three keynote contributions were carefully reviewed and selected from 85 submissions. The papers are organized in topical sections on gate-level modeling and characterization, interconnect modeling and optimization, asynchronous techniques, RTL power modeling and memory optimization, high-level modeling, power-efficient technologies and designs, communication modeling and design, and low-power issues in processors and multimedia.