Download Free Potential Theory Selected Topics Book in PDF and EPUB Free Download. You can read online Potential Theory Selected Topics and write the review.

The first part of these lecture notes is an introduction to potential theory to prepare the reader for later parts, which can be used as the basis for a series of advanced lectures/seminars on potential theory/harmonic analysis. Topics covered in the book include minimal thinness, quasiadditivity of capacity, applications of singular integrals to potential theory, L(p)-capacity theory, fine limits of the Nagel-Stein boundary limit theorem and integrability of superharmonic functions. The notes are written for an audience familiar with the theory of integration, distributions and basic functional analysis.
Introduction to fundamentals of potential functions covers the force of gravity, fields of force, potentials, harmonic functions, electric images and Green's function, sequences of harmonic functions, fundamental existence theorems, the logarithmic potential, and much more. Detailed proofs rigorously worked out. 1929 edition.
A self-contained treatment appropriate for advanced undergraduates and graduate students, this text offers a detailed development of the necessary background for its survey of the nonlinear potential theory of superharmonic functions. 1993 edition.
Potential theory and certain aspects of probability theory are intimately related, perhaps most obviously in that the transition function determining a Markov process can be used to define the Green function of a potential theory. Thus it is possible to define and develop many potential theoretic concepts probabilistically, a procedure potential theorists observe withjaun diced eyes in view of the fact that now as in the past their subject provides the motivation for much of Markov process theory. However that may be it is clear that certain concepts in potential theory correspond closely to concepts in probability theory, specifically to concepts in martingale theory. For example, superharmonic functions correspond to supermartingales. More specifically: the Fatou type boundary limit theorems in potential theory correspond to supermartingale convergence theorems; the limit properties of monotone sequences of superharmonic functions correspond surprisingly closely to limit properties of monotone sequences of super martingales; certain positive superharmonic functions [supermartingales] are called "potentials," have associated measures in their respective theories and are subject to domination principles (inequalities) involving the supports of those measures; in each theory there is a reduction operation whose properties are the same in the two theories and these reductions induce sweeping (balayage) of the measures associated with potentials, and so on.
This text bridges the gap between the classic texts on potential theory and modern books on applied geophysics. It opens with an introduction to potential theory, emphasising those aspects particularly important to earth scientists, such as Laplace's equation, Newtonian potential, magnetic and electrostatic fields, and conduction of heat. The theory is then applied to the interpretation of gravity and magnetic anomalies, drawing on examples from modern geophysical literature. Topics explored include regional and global fields, forward modeling, inverse methods, depth-to-source estimation, ideal bodies, analytical continuation, and spectral analysis. The book includes numerous exercises and a variety of computer subroutines written in FORTRAN. Graduate students and researchers in geophysics will find this book essential.
Potential theory is the broad area of mathematical analysis encompassing such topics as harmonic and subharmonic functions.
Within the tradition of meetings devoted to potential theory, a conference on potential theory took place in Prague on 19-24, July 1987. The Conference was organized by the Faculty of Mathematics and Physics, Charles University, with the collaboration of the Institute of Mathematics, Czechoslovak Academy of Sciences, the Department of Mathematics, Czech University of Technology, the Union of Czechoslovak Mathematicians and Physicists, the Czechoslovak Scientific and Technical Society, and supported by IMU. During the Conference, 69 scientific communications from different branches of potential theory were presented; the majority of them are in cluded in the present volume. (Papers based on survey lectures delivered at the Conference, its program as well as a collection of problems from potential theory will appear in a special volume of the Lecture Notes Series published by Springer-Verlag). Topics of these communications truly reflect the vast scope of contemporary potential theory. Some contributions deal with applications in physics and engineering, other concern potential theoretic aspects of function theory and complex analysis. Numerous papers are devoted to the theory of partial differential equations. Included are also many articles on axiomatic and abstract potential theory with its relations to probability theory. The present volume may thus be of intrest to mathematicians speciali zing in the above-mentioned fields and also to everybody interested in the present state of potential theory as a whole.
Markov Processes and Potential Theory
Potential theory grew out of mathematical physics, in particular out of the theory of gravitation and the theory of electrostatics. Mathematical physicists such as Poisson and Green introduced some of the central ideas of the subject. A mathematician with a general knowledge of analysis may find it useful to begin his study of classical potential theory by looking at its physical origins. Sections 2, 5 and 6 of these Notes give in part heuristic arguments based on physical considerations. These heuristic arguments suggest mathematical theorems and provide the mathematician with the problem of finding the proper hypotheses and mathematical proofs. These Notes are based on a one-semester course given by the author at Brown University in 1971. On the part of the reader, they assume a knowledge of Real Function Theory to the extent of a first year graduate course. In addition some elementary facts regarding harmonic functions are aS$umed as known. For convenience we have listed these facts in the Appendix. Some notation is also explained there. Essentially all the proofs we give in the Notes are for Euclidean 3-space R3 and Newtonian potentials ~.