Download Free Potassium Ion Channels Molecular Structure Function And Diseases Book in PDF and EPUB Free Download. You can read online Potassium Ion Channels Molecular Structure Function And Diseases and write the review.

A number of techniques to study ion channels have been developed since the electrical basis of excitability was first discovered. Ion channel biophysicists have at their disposal a rich and ever-growing array of instruments and reagents to explore the biophysical and structural basis of sodium channel behavior. Armed with these tools, researchers have made increasingly dramatic discoveries about sodium channels, culminating most recently in crystal structures of voltage-gated sodium channels from bacteria. These structures, along with those from other channels, give unprecedented insight into the structural basis of sodium channel function. This volume of the Handbook of Experimental Pharmacology will explore sodium channels from the perspectives of their biophysical behavior, their structure, the drugs and toxins with which they are known to interact, acquired and inherited diseases that affect sodium channels and the techniques with which their biophysical and structural properties are studied.
Ion channels are membrane proteins that act as gated pathways for the movement of ions across cell membranes. They play essential roles in the physiology of all cells. In recent years, an ever-increasing number of human and animal diseases have been found to result from defects in ion channel function. Most of these diseases arise from mutations in the genes encoding ion channel proteins, and they are now referred to as the channelopathies. Ion Channels and Disease provides an informative and up-to-date account of our present understanding of ion channels and the molecular basis of ion channel diseases. It includes a basic introduction to the relevant aspects of molecular biology and biophysics and a brief description of the principal methods used to study channelopathies. For each channel, the relationship between its molecular structure and its functional properties is discussed and ways in which genetic mutations produce the disease phenotype are considered. This book is intended for research workers and clinicians, as well as graduates and advanced undergraduates. The text is clear and lively and assumes little knowledge, yet it takes the reader to frontiers of what is currently known about this most exciting and medically important area of physiology. - Introduces the relevant aspects of molecular biology and biophysics - Describes the principal methods used to study channelopathies - Considers single classes of ion channels with summaries of the physiological role, subunit composition, molecular structure and chromosomal location, plus the relationship between channel structure and function - Looks at those diseases associated with defective channel structures and regulation, including mutations affecting channel function and to what extent this change in channel function can account for the clinical phenotype
In biochemistry, a metalloprotein is a generic term for a protein that contains a metal cofactor. The metal may be an isolated ion or may be coordinated with a nonprotein organic compound, such as the porphyrin found in hemoproteins. In some cases, the metal is co-coordinated with a side chain of the protein and an inorganic nonmetallic ion. This kind of protein-metal-nonmetal structure is seen in iron-sulfur clusters Metalloproteins deals with all aspects related to the intracellular and extracellular metal-binding proteins, including their structures, properties and functions. The biological roles of metal cations and metal-binding proteins are endless. They are involved in all crucial cellular activities. Many pathological conditions are related to the problematic metal metabolism. Research in metalloprotein-related topics is therefore rapidly growing, and different aspects of metal-binding proteins progressively enter curricula at Universities and even at the High School level on occasion. However, no key resource providing basic, but comprehensible knowledge on this rapidly expanding field exists. The Encyclopedia of Metalloproteins aims to bridge this gap, and will attempt to cover various aspects of metalloprotein/metalloproteomics and will deal with the different issues related to the intracellular and extracellular metal-binding proteins, including their structures, properties and functions. The goal is to cover exhaustively all catalytically and biologically crucial metal ions and to find at least one interacting protein for other metal ions. The Encyclopedia of Metalloproteins will provide a key resource for advanced undergraduate and graduate students, researchers, instructors, and professors interested in protein science, biochemistry, cell biology, and genetics.
Ion channel dysfunction in humans leads to impairment of the excitable processes necessary for the normal function of several tissues, such as muscle and brain. It follows that an increasing number of human diseases have been associated with malfunctioning ion channels, many of which have a genetic component. This volume of Advances in Genetics presents a broad and comprehensive overview of the inherited channelopathies in humans, including clinical, genetic and molecular aspects of these conditions. Keeping true to the scope of the serial, novel genomic and modeling research approaches and a review of potential therapeutic approaches for each of these conditions are also incorporated.
The aim of the present book is to comprehensively review current advances in understanding of genetics, structural biology, pharmacology of potassium channels and their roles in disease as well as to identify current gaps in knowledge. The ultimate goal is to provide a scientific foundation for better understanding of modulatory mechanisms and pharmacology of potassium channels and to use this understanding to drive future drug discovery. This book will be a must-have for academic and industrial scientists interested in physiology, pharmacology, pathology and structure-functional relationships of ion channels. The book will also be helpful for lecturers and students in the college and university classrooms, as well as for anyone interested in the state-of-the art in modern cell biology, physiology and pharmacology.
This book is the first to focus on potassium ion channels and covers the recent remarkable progress made in research on these proteins. Many diseases are caused by the abnormalities of potassium ion channels. They include diabetes mellitus, life-threatening hereditary cardiac arrhythmia, epilepsy, neural degeneration, and renal hypertension. Written by leading scientists in the field, this volume offers readers a comprehensive update of this field in the understanding of the genes, molecular structure, function and diseases of potassium ion channels.Key Features* The first comprehensive volume on potassium ion channels in all aspects of genes, molecular structure, function, and diseases* Completely up-to-date information* Written by leading scientists in the field
Store-operated calcium channels are found in most animal cells and regulate many cellular functions including cell division, growth, differentiation, and cell death. This volume provides a concise and informative overview of the principles of store-operated calcium entry and the key developments in the field from researchers who have led these advances. The overall goal of the volume is to provide interested students and investigators with sufficient information to enable a broad understanding of the progress and current excitement in the field. The volume contains a wealth of information that even experienced investigators in the field will find useful. - The volume provides a comprehensive overview of the mechanisms and functions of store-operated calcium channels - Contributors are authoritative researchers who have produced important advances in the field - The volume is well-illustrated with cartoons and data to facilitate easy comprehension of the subject
The New Benchmark for Understanding the Latest Developments of Ion ChannelsIon channels control the electrical properties of neurons and cardiac cells, mediate the detection and response to sensory stimuli, and regulate the response to physical stimuli. They can often interact with the cellular environment due to their location at the surface of ce
Calcium Entry Channels in Non-Excitable Cells focuses on methods of investigating the structure and function of non-voltage gated calcium channels. Each chapter presents important discoveries in calcium entry pathways, specifically dealing with the molecular identification of store-operated calcium channels which were reviewed by earlier volumes in the Methods in Signal Transduction series. Crystallographic and pharmacological approaches to the study of calcium channels of epithelial cells are also discussed. Calcium ion is a messenger in most cell types. Whereas voltage gated calcium channels have been studied extensively, the non-voltage gated calcium entry channel genes have only been identified relatively recently. The book will fill this important niche.