Download Free Postoptimal Analyses Parametric Programming And Related Topics Book in PDF and EPUB Free Download. You can read online Postoptimal Analyses Parametric Programming And Related Topics and write the review.

Postoptimal Analyses, Parametric Programming, and Related Topics: Degeneracy, Multicriteria Decision Making Redundancy.
Recent developments in multi-parametric optimization and control Multi-Parametric Optimization and Control provides comprehensive coverage of recent methodological developments for optimal model-based control through parametric optimization. It also shares real-world research applications to support deeper understanding of the material. Researchers and practitioners can use the book as reference. It is also suitable as a primary or a supplementary textbook. Each chapter looks at the theories related to a topic along with a relevant case study. Topic complexity increases gradually as readers progress through the chapters. The first part of the book presents an overview of the state-of-the-art multi-parametric optimization theory and algorithms in multi-parametric programming. The second examines the connection between multi-parametric programming and model-predictive control—from the linear quadratic regulator over hybrid systems to periodic systems and robust control. The third part of the book addresses multi-parametric optimization in process systems engineering. A step-by-step procedure is introduced for embedding the programming within the system engineering, which leads the reader into the topic of the PAROC framework and software platform. PAROC is an integrated framework and platform for the optimization and advanced model-based control of process systems. Uses case studies to illustrate real-world applications for a better understanding of the concepts presented Covers the fundamentals of optimization and model predictive control Provides information on key topics, such as the basic sensitivity theorem, linear programming, quadratic programming, mixed-integer linear programming, optimal control of continuous systems, and multi-parametric optimal control An appendix summarizes the history of multi-parametric optimization algorithms. It also covers the use of the parametric optimization toolbox (POP), which is comprehensive software for efficiently solving multi-parametric programming problems.
Optimality and stability are two important notions in applied mathematics. This book is a study of these notions and their relationship in linear and convex parametric programming models. It begins with a survey of basic optimality conditions in nonlinear programming. Then new results in convex programming, using LFS functions, for single-objective, multi-objective, differentiable and non-smooth programs are introduced. Parametric programming models are studied using basic tools of point-to-set topology. Stability of the models is introduced, essentially, as continuity of the feasible set of decision variables under continuous perturbations of the parameters. Perturbations that preserve this continuity are regions of stability. It is shown how these regions can be identified. The main results on stability are characterizations of locally and globally optimal parameters for stable and also for unstable perturbations. The results are straightened for linear models and bi-level programs. Some of the results are extended to abstract spaces after considering parameters as `controls'. Illustrations from diverse fields, such as data envelopment analysis, management, von Stackelberg games of market economy, and navigation problems are given and several case studies are solved by finding optimal parameters. The book has been written in an analytic spirit. Many results appear here for the first time in book form. Audience: The book is written at the level of a first-year graduate course in optimization for students with varied backgrounds interested in modeling of real-life problems. It is expected that the reader has been exposed to a prior elementary course in optimization, such as linear or non-linear programming. The last section of the book requires some knowledge of functional analysis.
This book consists of selected papers presented at the Third Conference of the Asian-Pacific Operational Research Societies. The selected papers cover broad areas of operations research, ranging from traditional to new directions in theory, algorithm and applications. Typical topics are linear and nonlinear programming, interior point method, combinatorial programming, scheduling, queueing theory, simulation, forecasting, inventory, telecommunication, finance, organizational intelligence, analytic hierarchy process, data envelopment analysis, fuzzy programming and others.
The standard view of Operations Research/Management Science (OR/MS) dichotomizes the field into deterministic and probabilistic (nondeterministic, stochastic) subfields. This division can be seen by reading the contents page of just about any OR/MS textbook. The mathematical models that help to define OR/MS are usually presented in terms of one subfield or the other. This separation comes about somewhat artificially: academic courses are conveniently subdivided with respect to prerequisites; an initial overview of OR/MS can be presented without requiring knowledge of probability and statistics; text books are conveniently divided into two related semester courses, with deterministic models coming first; academics tend to specialize in one subfield or the other; and practitioners also tend to be expert in a single subfield. But, no matter who is involved in an OR/MS modeling situation (deterministic or probabilistic - academic or practitioner), it is clear that a proper and correct treatment of any problem situation is accomplished only when the analysis cuts across this dichotomy.
Operations Research: 1934-1941," 35, 1, 143-152; "British The goal of the Encyclopedia of Operations Research and Operational Research in World War II," 35, 3, 453-470; Management Science is to provide to decision makers and "U. S. Operations Research in World War II," 35, 6, 910-925; problem solvers in business, industry, government and and the 1984 article by Harold Lardner that appeared in academia a comprehensive overview of the wide range of Operations Research: "The Origin of Operational Research," ideas, methodologies, and synergistic forces that combine to 32, 2, 465-475. form the preeminent decision-aiding fields of operations re search and management science (OR/MS). To this end, we The Encyclopedia contains no entries that define the fields enlisted a distinguished international group of academics of operations research and management science. OR and MS and practitioners to contribute articles on subjects for are often equated to one another. If one defines them by the which they are renowned. methodologies they employ, the equation would probably The editors, working with the Encyclopedia's Editorial stand inspection. If one defines them by their historical Advisory Board, surveyed and divided OR/MS into specific developments and the classes of problems they encompass, topics that collectively encompass the foundations, applica the equation becomes fuzzy. The formalism OR grew out of tions, and emerging elements of this ever-changing field. We the operational problems of the British and U. s. military also wanted to establish the close associations that OR/MS efforts in World War II.
This book introduces models and methodologies that can be employed towards making the Industry 4.0 vision a reality within the process industries, and at the same time investigates the impact of uncertainties in such highly integrated settings. Advances in computing power along with the widespread availability of data have led process industries to consider a new paradigm for automated and more efficient operations. The book presents a theoretically proven optimal solution to multi-parametric linear and mixed-integer linear programs and efficient solutions to problems such as process scheduling and design under global uncertainty. It also proposes a systematic framework for the uncertainty-aware integration of planning, scheduling and control, based on the judicious coupling of reactive and proactive methods. Using these developments, the book demonstrates how the integration of different decision-making layers and their simultaneous optimisation can enhance industrial process operations and their economic resilience in the face of uncertainty.
A large number of mathematical models in many diverse areas of science and engineering have lead to the formulation of optimization problems where the best solution (globally optimal) is needed. This book covers a small subset of important topics in global optimization with emphasis on theoretical developments and scientific applications.
This book presents a comprehensive optimization-based theory and framework that exploits the synergistic interactions and tradeoffs between process design and operational decisions that span different time scales. Conventional methods in the process industry often isolate decision making mechanisms with a hierarchical information flow to achieve tractable problems, risking suboptimal, even infeasible operations. In this book, foundations of a systematic model-based strategy for simultaneous process design, scheduling, and control optimization is detailed to achieve reduced cost and improved energy consumption in process systems. The material covered in this book is well suited for the use of industrial practitioners, academics, and researchers. In Chapter 1, a historical perspective on the milestones in model-based design optimization techniques is presented along with an overview of the state-of-the-art mathematical tools to solve the resulting complex problems. Chapters 2 and 3 discuss two fundamental concepts that are essential for the reader. These concepts are (i) mixed integer dynamic optimization problems and two algorithms to solve this class of optimization problems, and (ii) developing a model based multiparametric programming model predictive control. These tools are used to systematically evaluate the tradeoffs between different time-scale decisions based on a single high-fidelity model, as demonstrated on (i) design and control, (ii) scheduling and control, and (iii) design, scheduling, and control problems. We present illustrative examples on chemical processing units, including continuous stirred tank reactors, distillation columns, and combined heat and power regeneration units, along with discussions of other relevant work in the literature for each class of problems.