Download Free Post Treatments Of Anaerobically Treated Effluents Book in PDF and EPUB Free Download. You can read online Post Treatments Of Anaerobically Treated Effluents and write the review.

The anaerobic process is considered to be a sustainable technology for organic waste treatment mainly due to its lower energy consumption and production of residual solids coupled with the prospect of energy recovery from the biogas generated. However, the anaerobic process cannot be seen as providing the ‘complete’ solution as its treated effluents would typically not meet the desired discharge limits in terms of residual carbon, nutrients and pathogens. This has given impetus to subsequent post treatment in order to meet the environmental legislations and protect the receiving water bodies and environment. This book discusses anaerobic treatment from the perspective of organic wastes and wastewaters (municipal and industrial) followed by various post-treatment options for anaerobic effluent polishing and resource recovery. Coverage will also be from the perspective of future trends and thoughts on anaerobic technologies being able to support meeting the increasingly stringent disposal standards. The resource recovery angle is particularly interesting as this can arguably help achieve the circular economy. It is intended the information can be used to identify appropriate solutions for anaerobic effluent treatment and possible alternative approaches to the commonly applied post-treatment techniques. The succeeding discussion is intended to lead on to identification of opportunities for further research and development. This book can be used as a standard reference book and textbook in universities for Master and Doctoral students. The academic community relevant to the subject, namely faculty, researchers, scientists, and practicing engineers, will find the book both informative and as a useful source of successful case studies.
Anaerobic sewage treatment using UASB reactors has significantly expanded in the last few decades and is now a consolidated technology in some warm climate regions. Several advantages of the anaerobic process make it a more sustainable option for sewage treatment. However, there are still important constraints related to design, construction, and operation of UASB reactors. Conversely, there is enough knowledge, experience, and proven technology that can be used to effectively tackle all the related drawbacks. This book delivers the most relevant techno-scientific developments from academia and water authorities, comprehensively addressing the main aspects of interest in design, construction, and operation of UASB reactors for sewage treatment. Special attention is given to the proper and integrated management of sludge, scum, gaseous emissions, energy recovery, and effluent quality. The main purpose is to provide information and share experiences not yet compiled in the specialized literature on anaerobic sewage treatment. Therefore, a sequence of 12 well-interconnected chapters consolidates the practical knowledge and experiences that important research groups and recognized professionals worldwide have acquired over the past 20 years in demo- and full-scale anaerobic-based sewage treatment plants. Anaerobic Reactors for Sewage Treatment: Design, Construction and Operation can significantly contribute towards a responsible expansion of the anaerobic technology in the world. The book is a valuable tool for engineers, constructors, operators, wastewater utility managers, as well as for students interested in anaerobic processes for sewage treatment.
Anaerobic Reactors is the forth volume in the series Biological Wastewater Treatment. The fundamentals of anaerobic treatment are presented in detail, including its applicability, microbiology, biochemistry and main reactor configurations. Two reactor types are analysed in more detail, namely anaerobic filters and especially UASB (upflow anaerobic sludge blanket) reactors. Particular attention is also devoted to the post-treatment of the effluents from the anaerobic reactors. The book presents in a clear and informative way the main concepts, working principles, expected removal efficiencies, design criteria, design examples, construction aspects and operational guidelines for anaerobic reactors. About the series: The series is based on a highly acclaimed set of best selling textbooks. This international version is comprised by six textbooks giving a state-of-the-art presentation of the science and technology of biological wastewater treatment. Other titles in the series are: Volume 1: Waste Stabilisation Ponds; Volume 2: Basic Principles of Wastewater Treatment; Volume 3: Waste Stabilization Ponds; Volume 5: Activated Sludge and Aerobic Biofilm Reactors; Volume 6: Sludge Treatment and Disposal
This book contains a collection of different research activities where several technologies have been applied to the optimization of biodegradation processes. The book has three main sections: A) Hydrocarbons biodegradation, B) Biodegradation and anaerobic digestion, and C) Biodegradation and sustainability.
The book guides specialists and non-specialists from around the world on how or whether anaerobic processes can be part of solutions for the management of municipal and industrial solid, semi-solid, and liquid residues. The simple self-learning presentation style is designed to encourage deep understanding of the process principles, plant types and system configurations, performance capabilities, operational and maintenance requirements, post-treatment needs, and management options for coproducts without complex biochemical terminologies and equations. It describes key aerobic biological treatment processes used in conjunction with anaerobic biological treatment in feedstock pre-treatment and in post-treatment of by-products. Practical pre-treatment processes, techniques and operations are described alongside additional treatment techniques of biogas, digestates and treated effluents for various end use options. Effective applications in developing countries are also considered, enabling practitioners and plant operators to effectively apply technology in temperate and warm climatic conditions.
This book introduces the 3R concept applied to wastewater treatment and resource recovery under a double perspective. Firstly, it deals with innovative technologies leading to: Reducing energy requirements, space and impacts; Reusing water and sludge of sufficient quality; and Recovering resources such as energy, nutrients, metals and chemicals, including biopolymers. Besides targeting effective C,N&P removal, other issues such as organic micropollutants, gases and odours emissions are considered. Most of the technologies analysed have been tested at pilot- or at full-scale. Tools and methods for their Economic, Environmental, Legal and Social impact assessment are described. The 3R concept is also applied to Innovative Processes design, considering different levels of innovation: Retrofitting, where novel units are included in more conventional processes; Re-Thinking, which implies a substantial flowsheet modification; and Re-Imagining, with completely new conceptions. Tools are presented for Modelling, Optimising and Selecting the most suitable plant layout for each particular scenario from a holistic technical, economic and environmental point of view.
Sludge Reduction Technologies in Wastewater Treatment Plants is a review of the sludge reduction techniques integrated in wastewater treatment plants with detailed chapters on the most promising and most widespread techniques. The aim of the book is to update the international community on the current status of knowledge and techniques in the field of sludge reduction. It will provide a comprehensive understanding of the following issues in sludge reduction: principles of sludge reduction techniques; process configurations; potential performance; advantages and drawbacks; economics and energy consumption. This book will be essential reading for managers and technical staff of wastewater treatment plants as well as graduate students and post-graduate specialists.
Aerobic Granular Sludge has recently received growing attention by researchers and technology developers, worldwide. Laboratory studies and preliminary field tests led to the conclusion that granular activated sludge can be readily established and profitably used in activated sludge plants, provided 'correct' process conditions are chosen. But what makes process conditions 'correct'? And what makes granules different from activated sludge flocs? Answers to these question are offered in Aerobic Granular Sludge. Major topics covered in this book include: Reasons and mechanism of aerobic granule formation Structure of the microbial population of aerobic granules Role, composition and physical properties of EPS Diffuse limitation and microbial activity within granules Physio-chemical characteristics Operation and application of granule reactors Scale-up aspects of granular sludge reactors, and case studies Aerobic Granular Sludge provides up-to-date information about a rapidly emerging new technology of biological treatment.
This book provides up-to-date information on the state of the art in applications of biotechnological and microbiological tools for protecting the environment. Written by leading international experts, it discusses potential applications of biotechnological and microbiological techniques in solid waste management, wastewater treatment, agriculture, energy and environmental health. This first volume of the book “Environmental Microbiology and Biotechnology,” covers three main topics: Solid waste management, Agriculture utilization and Water treatment technology, exploring the latest developments from around the globe regarding applications of biotechnology and microbiology for converting wastes into valuable products and at the same time reducing the environmental pollution resulting from disposal. Wherever possible it also includes real-world examples. Further, it offers advice on which procedures should be followed to achieve satisfactory results, and provides insights that will promote the transition to the sustainable utilization of various waste products.
This book presents a state-of-the-art report on the treatment of pulp and paper industry effluents using anaerobic technology. It covers a comprehensive range of topics, including the basic reasons for anaerobic treatment, comparison between anaerobic and aerobic treatment, effluent types suitable for anaerobic treatment, design considerations for anaerobic treatment, anaerobic reactor configurations applied for treatment of pulp and paper industry effluents, present status of anaerobic treatment in pulp and paper industry, economic aspects, examples of full scale installations and future trends.