Download Free Possible Mechanisms For The Inheritance Of Acquired Characters Book in PDF and EPUB Free Download. You can read online Possible Mechanisms For The Inheritance Of Acquired Characters and write the review.

This book examines the toxicological and health implications of environmental epigenetics and provides knowledge through an interdisciplinary approach. Included in this volume are chapters outlining various environmental risk factors such as phthalates and dietary components, life states such as pregnancy and ageing, hormonal and metabolic considerations and specific disease risks such as cancer cardiovascular diseases and other non-communicable diseases. Environmental Epigenetics imparts integrative knowledge of the science of epigenetics and the issues raised in environmental epidemiology. This book is intended to serve both as a reference compendium on environmental epigenetics for scientists in academia, industry and laboratories and as a textbook for graduate level environmental health courses. Environmental Epigenetics imparts integrative knowledge of the science of epigenetics and the issues raised in environmental epidemiology. This book is intended to serve both as a reference compendium on environmental epigenetics for scientists in academia, industry and laboratories and as a textbook for graduate level environmental health courses.
This book formulates a relativistic theory of biology, challenging the common gene-centred view of organisms.
A reappraisal of Lamarckism--its historical impact and contemporary significance.
This is the first and only book, so far, to deal with the causal basis of evolution from an epigenetic view. By revealing the epigenetic "user" of the "genetic toolkit", this book demonstrates the primacy of epigenetic mechanisms and epigenetic information in generating evolutionary novelties. The author convincingly supports his theory with a host of examples from the most varied fields of biology, by emphasizing changes in developmental pathways as the basic source of evolutionary change in metazoans. - Original and thought provoking--a radically new theory that overcomes the present difficulties of the theory of evolution - Is the first and only theory that uses epigenetic mechanisms and principles for explaining evolution of metazoans - Takes an integrative approach and shows a wide range of learning
Epigenetic Mechanisms of the Cambrian Explosion provides readers with a basic biological knowledge and epigenetic explanation of the biological puzzle of the Cambrian explosion, the unprecedented rapid diversification of animals that began 542 million years ago. During an evolutionarily instant of ~10 million years, which represents only 0.3% of the time of existence of life on Earth, or less than 2% of the time of existence of metazoans, all of the 30 extant body plans, major animal groups (phyla) and several extinct groups appeared. The work helps address this phenomena and tries to answer remaining questions for evolutionary biology, epigenetics, and scientific researchers. The book recognizes and presents objective representations of alternative theories for epigenetic evolution in this period, with the author drawing on his epigenetic theory of evolution to explain the causal basis of the Cambrian explosion. Both empirical evidence and theoretical arguments are presented in support of this thought-provoking epigenetic theory. - Explains the Cambrian explosion from an entirely epigenetic view - Takes a causal rather than descriptive approach to the phenomenon - Allows for a broad readership, including those with only a basic biological knowledge, while maintaining scientific rigor
Since its origin in the early 20th century, the Modern Synthesis theory of evolution has grown to become the orthodox view on the process of organic evolution. Its central defining feature is the prominence it accords to genes in the explanation of evolutionary dynamics. Since the advent of the 21st century, however, the Modern Synthesis has been subject to repeated and sustained challenges. These are largely empirically driven. In the last two decades, evolutionary biology has witnessed unprecedented growth in the understanding of those processes that underwrite the development of organisms and the inheritance of characters. The empirical advances usher in challenges to the conceptual foundations of evolutionary theory. The extent to which the new biology challenges the Modern Synthesis has been the subject of lively debate. Many current commentators charge that the new biology of the 21st century calls for a revision, extension, or wholesale rejection of the Modern Synthesis Theory of evolution. Defenders of the Modern Synthesis maintain that the theory can accommodate the exciting new advances in biology. The original essays collected in this volume survey the various challenges to the Modern Synthesis arising from the new biology of the 21st century. The authors are evolutionary biologists, philosophers of science, and historians of biology from Europe and North America. Each of the essays discusses a particular challenge to the Modern Synthesis treatment of inheritance, development, or adaptation. Taken together, the essays cover a spectrum of views, from those that contend that the Modern Synthesis can rise to the challenges of the new biology, with little or no revision required, to those that call for the abandonment of the Modern Synthesis. The collection will be of interest to researchers and students in evolutionary biology, and the philosophy and history of the biological sciences.
Does the inheritance of acquired characteristics play a significant role in evolution? In this book, Eva Jablonka and Marion J. Lamb attempt to answer that question with an original, provocative exploration of the nature and origin of hereditary variations. Starting with a historical account of Lamarck's ideas and the reasons they have fallen in disrepute, the authors go on to challenge the prevailing assumption that all heritable variation is random and the result of variation in DNA base sequences. They also detail recent breakthroughs in our understanding of the molecular mechanisms underlying inheritance--including several pathways not envisioned by classical population genetics--and argue that these advances need to be more fully incorporated into mainstream evolutionary theory. Throughout, the book offers a new look at the evidence for and against the hereditability of environmentally induced changes, and addresses timely questions about the importance of non-Mendelian inheritance. A glossary and extensive list of references round out the book. Urging a reconsideration of the present DNA-centric view prevalent in the field, Epigentic Inheritance and Evolution will make fascinating and important reading for students and researchers in evolution, genetics, ecology, molecular biology, developmental biology, and the history and philosophy of science.
Black & white print. Concepts of Biology is designed for the typical introductory biology course for nonmajors, covering standard scope and sequence requirements. The text includes interesting applications and conveys the major themes of biology, with content that is meaningful and easy to understand. The book is designed to demonstrate biology concepts and to promote scientific literacy.
A riveting explanation of epigenetics, offering startling insights into our inheritable traits. In the 1700s, Jean-Baptiste Lamarck first described epigenetics to explain the inheritance of acquired characteristics; however, his theory was supplanted in the 1800s by Darwin's theory of evolution by natural selection through heritable genetic mutations. But natural selection could not adequately explain how rapidly species re-diversified and repopulated after mass extinctions. Now advances in the study of DNA and RNA have resurrected epigenetics, which can create radical physical and physiological changes in subsequent generations by the simple addition of a single small molecule, thus passing along a propensity for molecules to attach in the same places in the next generation. Epigenetics is a complex process, but paleontologist and astrobiologist Peter Ward breaks it down for general readers, using the epigenetic paradigm to reexamine how the history of our species-from deep time to the outbreak of the Black Plague and into the present-has left its mark on our physiology, behavior, and intelligence. Most alarming are chapters about epigenetic changes we are undergoing now triggered by toxins, environmental pollutants, famine, poor nutrition, and overexposure to violence. Lamarck's Revenge is an eye-opening and provocative exploration of how traits are inherited, and how outside influences drive what we pass along to our progeny.