Download Free Positive Implicative Bmbj Neutrosophic Ideals In Bck Algebras Book in PDF and EPUB Free Download. You can read online Positive Implicative Bmbj Neutrosophic Ideals In Bck Algebras and write the review.

The concepts of a positive implicative BMBJ-neutrosophic ideal is introduced, and several properties are investigated. Conditions for an MBJ-neutrosophic set to be a (positive implicative) BMBJ-neutrosophic ideal are provided. Relations between BMBJ-neutrosophic ideal and positive implicative BMBJ-neutrosophic ideal are discussed. Characterizations of positive implicative BMBJ-neutrosophic ideal are displayed.
The concepts of a BMBJ-neutrosophic subalgebra and a (closed) BMBJ-neutrosophic ideal are introduced, and several properties are investigated. Conditions for an MBJ-neutrosophic set to be a BMBJ-neutrosophic ideal in BCK/BCI-algebras are provided. Characterizations of BMBJ-neutrosophic ideal are discussed. Relations between a BMBJ-neutrosophic subalgebra, a BMBJ-neutrosophic subalgebra and a (closed) BMBJ-neutrosophic ideal are considered.
“Neutrosophic Sets and Systems” has been created for publications on advanced studies in neutrosophy, neutrosophic set, neutrosophic logic, neutrosophic probability, neutrosophic statistics that started in 1995 and their applications in any field, such as the neutrosophic structures developed in algebra, geometry, topology, etc.
“Neutrosophic Sets and Systems” has been created for publications on advanced studies in neutrosophy, neutrosophic set, neutrosophic logic, neutrosophic probability, neutrosophic statistics that started in 1995 and their applications in any field, such as the neutrosophic structures developed in algebra, geometry, topology, etc.
“Neutrosophic Sets and Systems” has been created for publications on advanced studies in neutrosophy, neutrosophic set, neutrosophic logic, neutrosophic probability, neutrosophic statistics that started in 1995 and their applications in any field, such as the neutrosophic structures developed in algebra, geometry, topology, etc.
“Neutrosophic Sets and Systems” has been created for publications on advanced studies in neutrosophy, neutrosophic set, neutrosophic logic, neutrosophic probability, neutrosophic statistics that started in 1995 and their applications in any field, such as the neutrosophic structures developed in algebra, geometry, topology, etc.
This ninth volume of Collected Papers includes 87 papers comprising 982 pages on Neutrosophic Theory and its applications in Algebra, written between 2014-2022 by the author alone or in collaboration with the following 81 co-authors (alphabetically ordered) from 19 countries: E.O. Adeleke, A.A.A. Agboola, Ahmed B. Al-Nafee, Ahmed Mostafa Khalil, Akbar Rezaei, S.A. Akinleye, Ali Hassan, Mumtaz Ali, Rajab Ali Borzooei , Assia Bakali, Cenap Özel, Victor Christianto, Chunxin Bo, Rakhal Das, Bijan Davvaz, R. Dhavaseelan, B. Elavarasan, Fahad Alsharari, T. Gharibah, Hina Gulzar, Hashem Bordbar, Le Hoang Son, Emmanuel Ilojide, Tèmítópé Gbóláhàn Jaíyéolá, M. Karthika, Ilanthenral Kandasamy, W.B. Vasantha Kandasamy, Huma Khan, Madad Khan, Mohsin Khan, Hee Sik Kim, Seon Jeong Kim, Valeri Kromov, R. M. Latif, Madeleine Al-Tahan, Mehmat Ali Ozturk, Minghao Hu, S. Mirvakili, Mohammad Abobala, Mohammad Hamidi, Mohammed Abdel-Sattar, Mohammed A. Al Shumrani, Mohamed Talea, Muhammad Akram, Muhammad Aslam, Muhammad Aslam Malik, Muhammad Gulistan, Muhammad Shabir, G. Muhiuddin, Memudu Olaposi Olatinwo, Osman Anis, Choonkil Park, M. Parimala, Ping Li, K. Porselvi, D. Preethi, S. Rajareega, N. Rajesh, Udhayakumar Ramalingam, Riad K. Al-Hamido, Yaser Saber, Arsham Borumand Saeid, Saeid Jafari, Said Broumi, A.A. Salama, Ganeshsree Selvachandran, Songtao Shao, Seok-Zun Song, Tahsin Oner, M. Mohseni Takallo, Binod Chandra Tripathy, Tugce Katican, J. Vimala, Xiaohong Zhang, Xiaoyan Mao, Xiaoying Wu, Xingliang Liang, Xin Zhou, Yingcang Ma, Young Bae Jun, Juanjuan Zhang.
In this paper we introduced the notions of neutrosophic (strong, weak, s-weak) hyper BCK-ideal and reflexive neutrosophic hyper BCK-ideal. Some relevant properties and their relations are indicated. Characterization of neutrosophic (weak) hyper BCK-ideal is considered.
Neutrosophic set theory was initiated as a method to handle indeterminate uncertain data. It is identified via three independent memberships represent truth T, indeterminate I and falsity F membership degrees of an element. As a generalization of neutrosophic set theory, Q-neutrosophic set theory was established as a new hybrid model that keeps the features of Q-fuzzy soft sets which handle two-dimensional information and the features of neutrosophic soft sets in dealing with uncertainty. Different extensions of fuzzy sets have been already implemented to several algebraic structures, such as groups, symmetric groups, rings and lie algebras. Group theory is one of the most essential algebraic structures in the field of algebra. The inspiration of the current work is to broaden the idea of Q-neutrosophic soft set to group theory. In this paper the concept of Q-neutrosophic soft groups is presented. Numerous properties and basic attributes are examined. We characterize the thought of Q-level soft sets of a Q-neutrosophic soft set, which is a bridge between Q-neutrosophic soft groups and soft groups. The concept of Q-neutrosophic soft homomorphism is defined and homomorphic image and preimage of a Q-neutrosophic soft groups are investigated. Furthermore, the cartesian product of Q-neutrosophic soft groups is proposed and some relevant properties are explored.
“Neutrosophic Sets and Systems” has been created for publications on advanced studies in neutrosophy, neutrosophic set, neutrosophic logic, neutrosophic probability, neutrosophic statistics that started in 1995 and their applications in any field, such as the neutrosophic structures developed in algebra, geometry, topology, etc. Some articles from this issue: BMBJ-neutrosophic ideals in BCK/BCI-algebras, Neutrosophic General Finite Automata, Generalized Neutrosophic Exponential map, Implementation of Neutrosophic Function Memberships Using MATLAB Program.