Download Free Portfolio Choice Under Risk Limits Book in PDF and EPUB Free Download. You can read online Portfolio Choice Under Risk Limits and write the review.

Academic finance has had a remarkable impact on many financial services. Yet long-term investors have received curiously little guidance from academic financial economists. Mean-variance analysis, developed almost fifty years ago, has provided a basic paradigm for portfolio choice. This approach usefully emphasizes the ability of diversification to reduce risk, but it ignores several critically important factors. Most notably, the analysis is static; it assumes that investors care only about risks to wealth one period ahead. However, many investors—-both individuals and institutions such as charitable foundations or universities—-seek to finance a stream of consumption over a long lifetime. In addition, mean-variance analysis treats financial wealth in isolation from income. Long-term investors typically receive a stream of income and use it, along with financial wealth, to support their consumption. At the theoretical level, it is well understood that the solution to a long-term portfolio choice problem can be very different from the solution to a short-term problem. Long-term investors care about intertemporal shocks to investment opportunities and labor income as well as shocks to wealth itself, and they may use financial assets to hedge their intertemporal risks. This should be important in practice because there is a great deal of empirical evidence that investment opportunities—-both interest rates and risk premia on bonds and stocks—-vary through time. Yet this insight has had little influence on investment practice because it is hard to solve for optimal portfolios in intertemporal models. This book seeks to develop the intertemporal approach into an empirical paradigm that can compete with the standard mean-variance analysis. The book shows that long-term inflation-indexed bonds are the riskless asset for long-term investors, it explains the conditions under which stocks are safer assets for long-term than for short-term investors, and it shows how labor income influences portfolio choice. These results shed new light on the rules of thumb used by financial planners. The book explains recent advances in both analytical and numerical methods, and shows how they can be used to understand the portfolio choice problems of long-term investors.
In 1952, Harry Markowitz published "Portfolio Selection," a paper which revolutionized modern investment theory and practice. The paper proposed that, in selecting investments, the investor should consider both expected return and variability of return on the portfolio as a whole. Portfolios that minimized variance for a given expected return were demonstrated to be the most efficient. Markowitz formulated the full solution of the general mean-variance efficient set problem in 1956 and presented it in the appendix to his 1959 book, Portfolio Selection. Though certain special cases of the general model have become widely known, both in academia and among managers of large institutional portfolios, the characteristics of the general solution were not presented in finance books for students at any level. And although the results of the general solution are used in a few advanced portfolio optimization programs, the solution to the general problem should not be seen merely as a computing procedure. It is a body of propositions and formulas concerning the shapes and properties of mean-variance efficient sets with implications for financial theory and practice beyond those of widely known cases. The purpose of the present book, originally published in 1987, is to present a comprehensive and accessible account of the general mean-variance portfolio analysis, and to illustrate its usefulness in the practice of portfolio management and the theory of capital markets. The portfolio selection program in Part IV of the 1987 edition has been updated and contains exercises and solutions.
Moving Beyond Modern Portfolio Theory: Investing That Matters tells the story of how Modern Portfolio Theory (MPT) revolutionized the investing world and the real economy, but is now showing its age. MPT has no mechanism to understand its impacts on the environmental, social and financial systems, nor any tools for investors to mitigate the havoc that systemic risks can wreck on their portfolios. It’s time for MPT to evolve. The authors propose a new imperative to improve finance’s ability to fulfil its twin main purposes: providing adequate returns to individuals and directing capital to where it is needed in the economy. They show how some of the largest investors in the world focus not on picking stocks, but on mitigating systemic risks, such as climate change and a lack of gender diversity, so as to improve the risk/return of the market as a whole, despite current theory saying that should be impossible. "Moving beyond MPT" recognizes the complex relations between investing and the systems on which capital markets rely, "Investing that matters" embraces MPT’s focus on diversification and risk adjusted return, but understands them in the context of the real economy and the total return needs of investors. Whether an investor, an MBA student, a Finance Professor or a sustainability professional, Moving Beyond Modern Portfolio Theory: Investing That Matters is thought-provoking and relevant. Its bold critique shows how the real world already is moving beyond investing orthodoxy.
Portfolio risk forecasting has been and continues to be an active research field for both academics and practitioners. Almost all institutional investment management firms use quantitative models for their portfolio forecasting, and researchers have explored models' econometric foundations, relative performance, and implications for capital market behavior and asset pricing equilibrium. Portfolio Risk Analysis provides an insightful and thorough overview of financial risk modeling, with an emphasis on practical applications, empirical reality, and historical perspective. Beginning with mean-variance analysis and the capital asset pricing model, the authors give a comprehensive and detailed account of factor models, which are the key to successful risk analysis in every economic climate. Topics range from the relative merits of fundamental, statistical, and macroeconomic models, to GARCH and other time series models, to the properties of the VIX volatility index. The book covers both mainstream and alternative asset classes, and includes in-depth treatments of model integration and evaluation. Credit and liquidity risk and the uncertainty of extreme events are examined in an intuitive and rigorous way. An extensive literature review accompanies each topic. The authors complement basic modeling techniques with references to applications, empirical studies, and advanced mathematical texts. This book is essential for financial practitioners, researchers, scholars, and students who want to understand the nature of financial markets or work toward improving them.
This handbook in two parts covers key topics of the theory of financial decision making. Some of the papers discuss real applications or case studies as well. There are a number of new papers that have never been published before especially in Part II.Part I is concerned with Decision Making Under Uncertainty. This includes subsections on Arbitrage, Utility Theory, Risk Aversion and Static Portfolio Theory, and Stochastic Dominance. Part II is concerned with Dynamic Modeling that is the transition for static decision making to multiperiod decision making. The analysis starts with Risk Measures and then discusses Dynamic Portfolio Theory, Tactical Asset Allocation and Asset-Liability Management Using Utility and Goal Based Consumption-Investment Decision Models.A comprehensive set of problems both computational and review and mind expanding with many unsolved problems are in an accompanying problems book. The handbook plus the book of problems form a very strong set of materials for PhD and Masters courses both as the main or as supplementary text in finance theory, financial decision making and portfolio theory. For researchers, it is a valuable resource being an up to date treatment of topics in the classic books on these topics by Johnathan Ingersoll in 1988, and William Ziemba and Raymond Vickson in 1975 (updated 2 nd edition published in 2006).
An introduction to the theory and methods of empirical asset pricing, integrating classical foundations with recent developments. This book offers a comprehensive advanced introduction to asset pricing, the study of models for the prices and returns of various securities. The focus is empirical, emphasizing how the models relate to the data. The book offers a uniquely integrated treatment, combining classical foundations with more recent developments in the literature and relating some of the material to applications in investment management. It covers the theory of empirical asset pricing, the main empirical methods, and a range of applied topics. The book introduces the theory of empirical asset pricing through three main paradigms: mean variance analysis, stochastic discount factors, and beta pricing models. It describes empirical methods, beginning with the generalized method of moments (GMM) and viewing other methods as special cases of GMM; offers a comprehensive review of fund performance evaluation; and presents selected applied topics, including a substantial chapter on predictability in asset markets that covers predicting the level of returns, volatility and higher moments, and predicting cross-sectional differences in returns. Other chapters cover production-based asset pricing, long-run risk models, the Campbell-Shiller approximation, the debate on covariance versus characteristics, and the relation of volatility to the cross-section of stock returns. An extensive reference section captures the current state of the field. The book is intended for use by graduate students in finance and economics; it can also serve as a reference for professionals.
Embracing finance, economics, operations research, and computers, this book applies modern techniques of analysis and computation to find combinations of securities that best meet the needs of private or institutional investors.
This book is an introduction to financial mathematics. It is intended for graduate students in mathematics and for researchers working in academia and industry. The focus on stochastic models in discrete time has two immediate benefits. First, the probabilistic machinery is simpler, and one can discuss right away some of the key problems in the theory of pricing and hedging of financial derivatives. Second, the paradigm of a complete financial market, where all derivatives admit a perfect hedge, becomes the exception rather than the rule. Thus, the need to confront the intrinsic risks arising from market incomleteness appears at a very early stage. The first part of the book contains a study of a simple one-period model, which also serves as a building block for later developments. Topics include the characterization of arbitrage-free markets, preferences on asset profiles, an introduction to equilibrium analysis, and monetary measures of financial risk. In the second part, the idea of dynamic hedging of contingent claims is developed in a multiperiod framework. Topics include martingale measures, pricing formulas for derivatives, American options, superhedging, and hedging strategies with minimal shortfall risk. This fourth, newly revised edition contains more than one hundred exercises. It also includes material on risk measures and the related issue of model uncertainty, in particular a chapter on dynamic risk measures and sections on robust utility maximization and on efficient hedging with convex risk measures. Contents: Part I: Mathematical finance in one period Arbitrage theory Preferences Optimality and equilibrium Monetary measures of risk Part II: Dynamic hedging Dynamic arbitrage theory American contingent claims Superhedging Efficient hedging Hedging under constraints Minimizing the hedging error Dynamic risk measures
Institutionelle Anleger, Fonds- und Portfoliomanager müssen Risiken eingehen, wenn sie Spitzengewinne erzielen wollen. Die Frage ist nur wieviel Risiko. "Risk Budgeting: Portfolio Problem Solving with VaR" liefert die Antwort auf diese Frage. Beim Konzept des Risk Budgeting geht es um Risiko- und Kapitalallokation auf der Grundlage erwarteter Erträge und Risiken, mit dem Ziel, höhere Renditen zu erwirtschaften im Rahmen eines vordefinierten Gesamtrisikoniveaus. Mit Hilfe quantitativer Methoden zur Risikomessung, einschließlich der Value at Risk-Methode läßt sich das Risiko ermitteln und bewerten. Value at Risk (VaR) ist ein Verfahren zur Risikobewertung, das Banken ursprünglich zur Messung und Begrenzung von Marktpreisrisiken eingesetzt haben. Heute wird die VaR-Methode auch verstärkt im Risikomanagement eingesetzt. Dieses Buch bietet eine fundierte Einführung in die VaR-Methode sowie in Verfahren zur Risikomessung bei Extremereignissen und Krisenszenarien (Stress Testing). Darüber hinaus erklärt es, wie man mit Hilfe des Risk Budgeting ein effizienteres Portfoliomanagement erreicht. "Risk Budgeting: Portfolio Problem Solving with VaR" ist das einzige Buch auf dem Markt, das Risk Budgeting und VaR - zwei brandaktuelle Themen im Portfoliomanagement - speziell für institutionelle Investment- und Portfolio-Manager aufbereitet. Eine unverzichtbare Lektüre.