Download Free Porous Inorganic Materials For Biomedical Applications Book in PDF and EPUB Free Download. You can read online Porous Inorganic Materials For Biomedical Applications and write the review.

Inorganic materials have been used for biomedical applications since many decades. They have been utilized successfully because of easy and economic methods for bulk preparation and industrial manufacturing. Surface modifications significantly improve the success of these materials and enable us to exploit their application in many innovative fields such as tissue engineering, dentistry, nanocarriers for drugs, medical diagnosis and antifouling technologies. This e-book provides comprehensive information on technologies for development and characterization of successful functionalized materials for biomedical applications relevant to surface modification. It is a suitable reference for advanced students and researchers interested in biomaterials science and medical applications of inorganic substances.
This book provides a contemporary research-led overview of the applications of inorganic materials in biomedicine. It begins with a short introduction summarising key concepts in inorganic materials (layered materials, framework materials etc.), and explaining the need for new materials in medicine. It then discusses the key areas in which inorganic materials have been applied, considering: drug delivery; imaging; diagnostics and theranostics; hard matter restoration; and vaccines. Each chapter gives an overview of the major extant challenges in the research area, before presenting a systematic review of how inorganic materials have been applied to gain traction in the field. A clear focus is maintained on the fate of the applied materials in vivo, clinical considerations, and the path to translation from lab to clinic. With contributions from leading researchers, Biomedical Applications of Inorganic Materials will provide a comprehensive introduction for advanced undergraduates, postgraduates and researchers wishing to learn about the topic.
Metal-Organic Frameworks for Biomedical Applications is a comprehensive, authoritative reference that offers a substantial and complete treatment of published results that have yet to be critically reviewed. It offers a summary of current research and provides in-depth understanding of the role of metal-organic frameworks in biomedical engineering. The title consists of twenty-two chapters presented by leading international researchers in the field. Chapters are arranged by target-application in biomedical engineering, allowing medical and pharmaceutic specialists to translate current materials and engineering science on metal-organic frameworks into their work.
The first comprehensive textbook on the timely and rapidly developing topic of inorganic porous materials This is the first textbook to completely cover a broad range of inorganic porous materials. It introduces the reader to the development of functional porous inorganic materials, from the synthetic zeolites in the 50’s, to today’s hybrid materials such as metal-organic frameworks (MOFs), covalent organic frameworks (COFs) and related networks. It also provides the necessary background to understand how porous materials are organized, characterized, and applied in adsorption, catalysis, and many other domains. Additionally, the book explains characterization and application from the materials scientist viewpoint, giving the reader a practical approach on the characterization and application of the respective materials. Introduction to Inorganic Porous Materials begins by describing the basic concepts of porosity and the different types of pores, surfaces, and amorphous versus crystalline materials, before introducing readers to nature’s porous materials. It then goes on to cover everything from adsorption and catalysis to amorphous materials such as silica to inorganic carbons and Periodic Mesoporous Organosilicas (PMOs). It discusses the synthesis and applications of MOFs and the broad family of COFs. It concludes with a look at future prospects and emerging trends in the field. The only complete book of its kind to cover the wide variety of inorganic and hybrid porous materials A comprehensive reference and outstanding tool for any course on inorganic porous materials, heterogeneous catalysis, and adsorption Gives students and investigators the opportunity to learn about porous materials, how to characterize them, and understand how they can be applied in different fields Introduction to Inorganic Porous Materials is an excellent book for students and professionals of inorganic chemistry and materials science with an interest in porous materials, functional inorganic materials, heterogeneous catalysis and adsorption, and solid state characterization techniques.
Inorganic Frameworks as Smart Nanocarriers for Drug Delivery brings together recent research in the area of inorganic frameworks for drug delivery. Different types of nanocarriers are presented and discussed in detail, providing an up-to-date overview on inorganic nanoparticles with pharmaceutical applications. Written by a diverse range of international academics, this book is a valuable reference resource for researchers in biomaterials, the pharmaceutical industry, and those who want to learn more about the current applications of inorganic smart nanocarriers. - Includes assembly methods for a variety of smart nanocarrier systems, also showing how they are applied - Highlights how metal-oxide nanoparticles are effectively used in drug delivery - Assesses the pros and cons of different metallic nanomaterials as drug carriers
This first book devoted to this hot field of science covers materials with bimodal, trimodal and multimodal pore size, with an emphasis on the successful design, synthesis and characterization of all kinds of hierarchically porous materials using different synthesis strategies. It details formation mechanisms related to different synthesis strategies while also introducing natural phenomena of hierarchy and perspectives of hierarchical science in polymers, physics, engineering, biology and life science. Examples are given to illustrate how to design an optimal hierarchically porous material for specific applications ranging from catalysis and separation to biomedicine, photonics, and energy conversion and storage. With individual chapters written by leading experts, this is the authoritative treatment, serving as an essential reference for researchers and beginners alike.
Advances in Polymer Science enjoys a longstanding tradition and good reputation in its community. Each volume is dedicated to a current topic, and each review critically surveys one aspect of that topic, to place it within the context of the volume. The volumes typically summarize the significant developments of the last 5 to 10 years and discuss them critically, presenting selected examples, explaining and illustrating the important principles, and bringing together many important references of primary literature. On that basis, future research directions in the area can be discussed. Advances in Polymer Science volumes thus are important references for every polymer scientist, as well as for other scientists interested in polymer science - as an introduction to a neighboring field, or as a compilation of detailed information for the specialist.
Frontiers in Biomaterials: The Design, Synthetic Strategies and Biocompatibility of Polymer Scaffolds for Biomedical Application, Volume 1 highlights the importance of biomaterials and their interaction with biological system. The need for the development of biomaterials as scaffold for tissue regeneration is driven by the increasing demands for materials that mimic functions of extracellular matrices of body tissues. This eBook covers the latest challenges on the biocompatibility of scaffold overtime after implantation and discusses the requirement of innovative technologies and strategies for the development of materials with long-lasting scaffold and biocompatibility functions. The contents of this eBook include chapters on cell-scaffold interactions in three dimensions, nanocrystalline diamond films for biomedical applications, bioceramics-design, synthesis and biological applications, polyester biomaterials for regenerative medicine, nanomaterials for skin regeneration and many more. This book is a valuable resource for MSc and PhD students , academic personnel and researchers seeking updated and critically important information on biomaterials and biomedical applications.
Porous Silicon for Biomedical Applications, Second Edition, provides an updated guide to the diverse range of biomedical applications of porous silicon, from biosensing and imaging to tissue engineering and cancer therapy. Across biomedical disciplines, there is an ongoing search for biomaterials that are biocompatible, modifiable, structurally sound, and versatile. Porous silicon possesses a range of properties that make it ideal for a variety of biomedical applications, such as controllable geometry, tunable nanoporous structure, large pore volume/high specific surface area, and versatile surface chemistry. This book provides a fully updated and detailed overview of the range of biomedical applications for porous silicon. Part One offers the reader a helpful insight into the fundamentals and beneficial properties of porous silicon, including thermal properties and stabilization, photochemical and nonthermal chemical modification, protein modification, and biocompatibility. The book then builds on the systematic detailing of each biomedical application using porous silicon, from bioimaging and sensing to drug delivery and tissue engineering. This new edition also includes new chapters on in-vivo assessment of porous silicon, photodynamic and photothermal therapy, micro- and nanoneedles, Raman imaging, cancer immunotherapy, and more. With its acclaimed editor and international team of expert contributors, Porous Silicon for Biomedical Applications, Second Edition, is a technical resource and indispensable guide for all those involved in the research, development, and application of porous silicon and other biomaterials, while providing a comprehensive introduction for students and academics interested in this field. - Reviews the fundamental aspects of porous silicon, including the fabrication and unique properties of this useful material. - Discusses a broad selection of biomedical applications, offering a detailed insight into the benefits of porous silicon in both research and clinical settings. - Includes fully updated content from the previous edition, as well as brand new chapters, covering topics such as porous silicon micro- and nanoneedles, and cancer immunotherapy.
This book provides a practical guide to the use and applications of inorganic biomaterials. It begins by introducing the concept of inorganic biomaterials, which includes bioceramics and bioglass. This concept is further extended to hybrid biomaterials consisting of inorganic and organic materials to mimic natural biomaterials. The book goes on to provide the reader with information on biocompatibility, bioactivity and bioresorbability. The concept of the latter is important because of the increasing role resorbable biomaterials are playing in implant applications. The book also introduces a new concept on mechanical compatibility - 'mechacompatibility'. Almost all implant biomaterials employed to date, such as metal and ceramic implants, do not meet this biological requirement as they have far higher modulus than any biomaterials in the body. The practical techniques that are used in the characterization of biomaterials, including chemical, physical, biological, microscopy and mechanical characterization are described. Some specialised techniques are also introduced such as Synchrotron Micro-Computed Tomography (u-CT) and Magnetic Resonance Imaging (MRI). The reader is given important information on new biomaterials development for orthopaedic and other areas, including controlled release technology, hydroxyapatite and hybrid bioresorbable materials. Finally the book provides a guide to regulatory considerations, an area which is often overlooked, but is an important part of R&D and manufacturing of medical materials and devices.