Download Free Population Dynamics Based On Individual Stochasticity Book in PDF and EPUB Free Download. You can read online Population Dynamics Based On Individual Stochasticity and write the review.

This book demonstrates that population structure and dynamics can be reconstructed by stochastic analysis. Population projection is usually based on age-structured population models. These models consist of age-dependent fertility and mortality, whereas birth and death processes generally arise from states of individuals. For example, a number of seeds are proportional to tree size, and amount of income and savings are the basis of decision making for birth behavior in human beings. Thus, even though individuals belong to an identical cohort, they have different fertility and mortality. To treat this kind of individual heterogeneity, stochastic state transitions are reasonable rather than the deterministic states. This book extends deterministic systems to stochastic systems specifically, constructing a state transition model represented by stochastic differential equations. The diffusion process generated by stochastic differential equations provides statistics determining population dynamics, i.e., heterogeneity is incorporated in population dynamics as its statistics. Applying this perspective to demography and evolutionary biology, we can consider the role of heterogeneity in life history or evolution. These concepts are provided to readers with explanations of stochastic analysis.
In this contribution, several probabilistic tools to study population dynamics are developed. The focus is on scaling limits of qualitatively different stochastic individual based models and the long time behavior of some classes of limiting processes. Structured population dynamics are modeled by measure-valued processes describing the individual behaviors and taking into account the demographic and mutational parameters, and possible interactions between individuals. Many quantitative parameters appear in these models and several relevant normalizations are considered, leading to infinite-dimensional deterministic or stochastic large-population approximations. Biologically relevant questions are considered, such as extinction criteria, the effect of large birth events, the impact of environmental catastrophes, the mutation-selection trade-off, recovery criteria in parasite infections, genealogical properties of a sample of individuals. These notes originated from a lecture series on Structured Population Dynamics at Ecole polytechnique (France). Vincent Bansaye and Sylvie Méléard are Professors at Ecole Polytechnique (France). They are a specialists of branching processes and random particle systems in biology. Most of their research concerns the applications of probability to biodiversity, ecology and evolution.
1. Demographic and environmental stochasticity -- 2. Extinction dynamics -- 3. Age structure -- 4. Spatial structure -- 5. Population viability analysis -- 6. Sustainable harvesting -- 7. Species diversity -- 8. Community dynamics.
This open access book shows how to use sensitivity analysis in demography. It presents new methods for individuals, cohorts, and populations, with applications to humans, other animals, and plants. The analyses are based on matrix formulations of age-classified, stage-classified, and multistate population models. Methods are presented for linear and nonlinear, deterministic and stochastic, and time-invariant and time-varying cases. Readers will discover results on the sensitivity of statistics of longevity, life disparity, occupancy times, the net reproductive rate, and statistics of Markov chain models in demography. They will also see applications of sensitivity analysis to population growth rates, stable population structures, reproductive value, equilibria under immigration and nonlinearity, and population cycles. Individual stochasticity is a theme throughout, with a focus that goes beyond expected values to include variances in demographic outcomes. The calculations are easily and accurately implemented in matrix-oriented programming languages such as Matlab or R. Sensitivity analysis will help readers create models to predict the effect of future changes, to evaluate policy effects, and to identify possible evolutionary responses to the environment. Complete with many examples of the application, the book will be of interest to researchers and graduate students in human demography and population biology. The material will also appeal to those in mathematical biology and applied mathematics.
Populations living in natural environments experience fluctuations in environmental conditions that drive variability in demographic rates. This dissertation develops new and existing mathematical methods for studying environmental stochasticity and uses these tools to investigate the role of environmental stochasticity in driving observed population dynamics and plant life history evolution. In the first two chapters I develop new approaches to a classic method in population biology, the life table response experiment (LTRE). Whereas existing methods used time-averaged demographic rates and deterministic sensitivities to decompose observed differences in population growth rates, this new method allows estimation of the contributions to those differences made by variances in demographic rates as well as by mean rate values. I use this stochastic LTRE to show how differential variability in the vital rates of Anthyllis vulneraria (kidney vetch) contribute to differences in the population growth rates of nine populations growing in southwest Belgium; we also show how the effects of demographic rate variability depend on soil depth, where the greater moisture retention of deeper soils buffers populations against the otherwise negative effects of demographic variability. The second chapter provides a different approach to LTRE that uses an iterated two-factor decomposition of the small noise approximation of the stochastic population growth rate to quantify contributions to that growth rate made by: (i) mean vital rates, (ii) temporal variability in vital rates, (iii) elasticities of the population growth rate to individual vital rates, and (iv) correlations between vital rates across the study period. Contributions of elasticities tell us about differences in local selection pressures acting on distinct populations and contributions of correlations tell us about differences in the phenotypic tradeoffs associated with vital rates. I use this new method to show how these differences drive dynamics in two species: Anthyllis vulneraria (the same populations studied in the first chapter) and Cypripedium calceolus (lady's slipper orchid). In Anthyllis vulneraria, variability in large adult fertility and seedling survival made the largest contributions; there were also effects of differences in elasticities of large adult fertility and survival, as well as differences in the correlations between rapid growth and survival in seedlings (a survival cost of rapid early development), between large adult fertility and survival (a survival cost of reproduction) and between large adult fertility and seedling survival. In Cypripedium calceolus, population growth rates were driven most by differences in the elasticities to the probabilities of adult stasis vs. entering dormancy, as well as by differences in the variability and tradeoffs associated with adult dormancy; correlation played a role through differences in the survival payoff of dormancy vs. the complimentary fertility cost of dormancy in terms of lost opportunity for reproduction. The third and final chapter investigates the role of fire disturbance in driving the life histories and population-level dynamics of five woody plant species growing in the Brazilian cerrado, a savannah-forest mosaic in which woody vegetation cover is primarily mediated by fire disturbance. This study presents a set of diagnostics that use demographic responses to recurring disturbance to categorize species along a continuum of adaptation: on one end we find 'resistant' species that must weather disturbance in order to attain large sizes that are buffered against fire-induced mortality; on the other end we find 'resilient' species that are relatively indifferent to disturbance and harness transient opportunities afforded by early post-fire successional habitats in order to take advantage of increased nutrient availability and reduced competition. Each of these chapters uses stochastic demographic analysis to extend theory describing the dynamics of populations in variable environments; together, these studies present a variegated perspective on the role of environmental stochasticity that provides new methods and novel perspectives that should be useful in the study of population biology and life history evolution.
Throughout the twentieth century, biologists investigated the mechanisms that stabilize biological populations, populations which--if unchecked by such agencies as competition and predation--should grow geometrically. How is order in nature maintained in the face of the seemingly disorderly struggle for existence? In this book, Laurence Mueller and Amitabh Joshi examine current theories of population stability and show how recent laboratory research on model populations--particularly blowflies, Tribolium, and Drosophila--contributes to our understanding of population dynamics and the evolution of stability. The authors review the general theory of population stability and critically analyze techniques for inferring whether a given population is in balance or not. They then show how rigorous empirical research can reveal both the proximal causes of stability (how populations are regulated and maintained at an equilibrium, including the relative roles of biotic and abiotic factors) and its ultimate, mostly evolutionary causes. In the process, they describe experimental studies on model systems that address the effects of age-structure, inbreeding, resource levels, and population structure on the stability and persistence of populations. The discussion incorporates the authors' own findings on the evolution of population stability in Drosophila. They go on to relate laboratory work to studies of animals in the wild and to develop a general framework for relating the life history and ecology of a species to its population dynamics. This accessible, finely written illustration of how carefully designed experiments can improve theory will have tremendous value for all ecologists and evolutionary biologists.
In this thesis two variants of the fast variable elimination method are developed. They are intuitive, simple to implement and give results which are in very good agreement with those found from numerical simulations. The relative simplicity of the techniques makes them ideal for applying to problems featuring demographic stochasticity, for experts and non-experts alike. Within the context of mathematical modelling, fast variable elimination is one of the central tools with which one can simplify a multivariate problem. When used in the context of of deterministic systems, the theory is quite standard, but when stochastic effects are present, it becomes less straightforward to apply. While the introductory and background chapters form an excellent primer to the theory of stochastic population dynamics, the techniques developed can be applied to systems exhibiting a separation of timescales in a variety of fields including population genetics, ecology and epidemiology.
A population is a summation of all the organisms of the same group or species, which live in a particular geographical area, and have the capability of interbreeding. The main mathematical problem for a given population is to carefully examine the evolution (time dependent dynamics) of the population. The mathematical methods used in the study of this problem are based on probability theory, stochastic processes, dynamical systems, nonlinear differential and difference equations, and (non-)associative algebras.A state of a population is a distribution of probabilities of the different types of organisms in every generation. Type partition is called differentiation (for example, sex differentiation which defines a bisexual population). This book systematically describes the recently developed theory of (bisexual) population, and mainly contains results obtained since 2010.The book presents algebraic and probabilistic approaches in the theory of population dynamics. It also includes several dynamical systems of biological models such as dynamics generated by Markov processes of cubic stochastic matrices; dynamics of sex-linked population; dynamical systems generated by a gonosomal evolution operator; dynamical system and an evolution algebra of mosquito population; and ocean ecosystems.The main aim of this book is to facilitate the reader's in-depth understanding by giving a systematic review of the theory of population dynamics which has wide applications in biology, mathematics, medicine, and physics.
Populations living in natural environments experience fluctuations in environmental conditions that drive variability in demographic rates. This dissertation develops new and existing mathematical methods for studying environmental stochasticity and uses these tools to investigate the role of environmental stochasticity in driving observed population dynamics and plant life history evolution. In the first two chapters I develop new approaches to a classic method in population biology, the life table response experiment (LTRE). Whereas existing methods used time-averaged demographic rates and deterministic sensitivities to decompose observed differences in population growth rates, this new method allows estimation of the contributions to those differences made by variances in demographic rates as well as by mean rate values. I use this stochastic LTRE to show how differential variability in the vital rates of Anthyllis vulneraria (kidney vetch) contribute to differences in the population growth rates of nine populations growing in southwest Belgium; we also show how the effects of demographic rate variability depend on soil depth, where the greater moisture retention of deeper soils buffers populations against the otherwise negative effects of demographic variability. The second chapter provides a different approach to LTRE that uses an iterated two-factor decomposition of the small noise approximation of the stochastic population growth rate to quantify contributions to that growth rate made by: (i) mean vital rates, (ii) temporal variability in vital rates, (iii) elasticities of the population growth rate to individual vital rates, and (iv) correlations between vital rates across the study period. Contributions of elasticities tell us about differences in local selection pressures acting on distinct populations and contributions of correlations tell us about differences in the phenotypic tradeoffs associated with vital rates. I use this new method to show how these differences drive dynamics in two species: Anthyllis vulneraria (the same populations studied in the first chapter) and Cypripedium calceolus (lady's slipper orchid). In Anthyllis vulneraria, variability in large adult fertility and seedling survival made the largest contributions; there were also effects of differences in elasticities of large adult fertility and survival, as well as differences in the correlations between rapid growth and survival in seedlings (a survival cost of rapid early development), between large adult fertility and survival (a survival cost of reproduction) and between large adult fertility and seedling survival. In Cypripedium calceolus, population growth rates were driven most by differences in the elasticities to the probabilities of adult stasis vs. entering dormancy, as well as by differences in the variability and tradeoffs associated with adult dormancy; correlation played a role through differences in the survival payoff of dormancy vs. the complimentary fertility cost of dormancy in terms of lost opportunity for reproduction. The third and final chapter investigates the role of fire disturbance in driving the life histories and population-level dynamics of five woody plant species growing in the Brazilian cerrado, a savannah-forest mosaic in which woody vegetation cover is primarily mediated by fire disturbance. This study presents a set of diagnostics that use demographic responses to recurring disturbance to categorize species along a continuum of adaptation: on one end we find 'resistant' species that must weather disturbance in order to attain large sizes that are buffered against fire-induced mortality; on the other end we find 'resilient' species that are relatively indifferent to disturbance and harness transient opportunities afforded by early post-fire successional habitats in order to take advantage of increased nutrient availability and reduced competition. Each of these chapters uses stochastic demographic analysis to extend theory describing the dynamics of populations in variable environments; together, these studies present a variegated perspective on the role of environmental stochasticity that provides new methods and novel perspectives that should be useful in the study of population biology and life history evolution.