Download Free Polytopes Book in PDF and EPUB Free Download. You can read online Polytopes and write the review.

Based on a graduate course at the Technische Universität, Berlin, these lectures present a wealth of material on the modern theory of convex polytopes. The straightforward exposition features many illustrations, and complete proofs for most theorems. With only linear algebra as a prerequisite, it takes the reader quickly from the basics to topics of recent research. The lectures introduce basic facts about polytopes, with an emphasis on methods that yield the results, discuss important examples and elegant constructions, and show the excitement of current work in the field. They will provide interesting and enjoyable reading for researchers as well as students.
Based on a graduate course at the Technische Universität, Berlin, these lectures present a wealth of material on the modern theory of convex polytopes. The straightforward exposition features many illustrations, and complete proofs for most theorems. With only linear algebra as a prerequisite, it takes the reader quickly from the basics to topics of recent research. The lectures introduce basic facts about polytopes, with an emphasis on methods that yield the results, discuss important examples and elegant constructions, and show the excitement of current work in the field. They will provide interesting and enjoyable reading for researchers as well as students.
The aim of this book is to introduce the reader to the fascinating world of convex polytopes. The highlights of the book are three main theorems in the combinatorial theory of convex polytopes, known as the Dehn-Sommerville Relations, the Upper Bound Theorem and the Lower Bound Theorem. All the background information on convex sets and convex polytopes which is m~eded to under stand and appreciate these three theorems is developed in detail. This background material also forms a basis for studying other aspects of polytope theory. The Dehn-Sommerville Relations are classical, whereas the proofs of the Upper Bound Theorem and the Lower Bound Theorem are of more recent date: they were found in the early 1970's by P. McMullen and D. Barnette, respectively. A famous conjecture of P. McMullen on the charac terization off-vectors of simplicial or simple polytopes dates from the same period; the book ends with a brief discussion of this conjecture and some of its relations to the Dehn-Sommerville Relations, the Upper Bound Theorem and the Lower Bound Theorem. However, the recent proofs that McMullen's conditions are both sufficient (L. J. Billera and C. W. Lee, 1980) and necessary (R. P. Stanley, 1980) go beyond the scope of the book. Prerequisites for reading the book are modest: standard linear algebra and elementary point set topology in [R1d will suffice.
"The original edition [...] inspired a whole generation of grateful workers in polytope theory. Without it, it is doubtful whether many of the subsequent advances in the subject would have been made. The many seeds it sowed have since grown into healthy trees, with vigorous branches and luxuriant foliage. It is good to see it in print once again." --Peter McMullen, University College London
The book collects results about realization spaces of polytopes. It gives a presentation of the author's "Universality Theorem for 4-polytopes". It is a comprehensive survey of the important results that have been obtained in that direction. The approaches chosen are direct and very geometric in nature. The book is addressed to researchers and to graduate students. The former will find a comprehensive source for the above mentioned results. The latter will find a readable introduction to the field. The reader is assumed to be familiar with basic concepts of linear algebra.
Foremost book available on polytopes, incorporating ancient Greek and most modern work. Discusses polygons, polyhedrons, and multi-dimensional polytopes. Definitions of symbols. Includes 8 tables plus many diagrams and examples. 1963 edition.
The majority of the chemical elements form chemical compounds with molecules of higher dimension (i.e., substantially exceeding three). This fact is very important for the analysis of molecular interactions in various areas: nanomedicine, nanotoxicology, and quantum biology. The Geometry of Higher-Dimensional Polytopes contains innovative research on the methods and applications of the structures of binary compounds. It explores the study of geometry polytopes from a higher-dimensional perspective, taking into account the features of polytopes that are models of chemical compounds. While highlighting topics including chemical compounds, symmetry transformation, and DNA structures, this book is ideally designed for researchers, academicians, and students seeking current research on dimensions present in binary compounds.
The aim of this volume is to reinforce the interaction between the three main branches (abstract, convex and computational) of the theory of polytopes. The articles include contributions from many of the leading experts in the field, and their topics of concern are expositions of recent results and in-depth analyses of the development (past and future) of the subject. The subject matter of the book ranges from algorithms for assignment and transportation problems to the introduction of a geometric theory of polyhedra which need not be convex. With polytopes as the main topic of interest, there are articles on realizations, classifications, Eulerian posets, polyhedral subdivisions, generalized stress, the Brunn--Minkowski theory, asymptotic approximations and the computation of volumes and mixed volumes. For researchers in applied and computational convexity, convex geometry and discrete geometry at the graduate and postgraduate levels.
This book is about the interplay of computational commutative algebra and the theory of convex polytopes. It centres around a special class of ideals in a polynomial ring: the class of toric ideals. They are characterized as those prime ideals that are generated by monomial differences or as the defining ideals of toric varieties (not necessarily normal). The interdisciplinary nature of the study of Gröbner bases is reflected by the specific applications appearing in this book. These applications lie in the domains of integer programming and computational statistics. The mathematical tools presented in the volume are drawn from commutative algebra, combinatorics, and polyhedral geometry.