Download Free Polyploidy And Induced Mutations In Plant Breeding Book in PDF and EPUB Free Download. You can read online Polyploidy And Induced Mutations In Plant Breeding and write the review.

This book is open access under a CC BY-NC 2.5 license. This book offers 19 detailed protocols on the use of induced mutations in crop breeding and functional genomics studies, which cover topics including chemical and physical mutagenesis, phenotypic screening methods, traditional TILLING and TILLING by sequencing, doubled haploidy, targeted genome editing, and low-cost methods for the molecular characterization of mutant plants that are suitable for laboratories in developing countries. The collection of protocols equips users with the techniques they need in order to start a program on mutation breeding or functional genomics using both forward and reverse-genetic approaches. Methods are provided for seed and vegetatively propagated crops (e.g. banana, barley, cassava, jatropha, rice) and can be adapted for use in other species.
This paper provides guidelines for new high-throughput screening methods – both phenotypic and genotypic – to enable the detection of rare mutant traits, and reviews techniques for increasing the efficiency of crop mutation breeding.
Abstract: This book presents contemporary information on mutagenesis in plants and its applications in plant breeding and research. The topics are classified into sections focusing on the concepts, historical development and genetic basis of plant mutation breeding (chapters 1-6); mutagens and induced mutagenesis (chapters 7-13); mutation induction and mutant development (chapters 14-23); mutation breeding (chapters 24-34); or mutations in functional genomics (chapters 35-41). This book is an essential reference for those who are conducting research on mutagenesis as an approach to improving or modifying a trait, or achieving basic understanding of a pathway for a trait --.
This book offers a detailed overview of both conventional and modern approaches to plant breeding. In 25 chapters, it explores various aspects of conventional and modern means of plant breeding, including: history, objective, activities, centres of origin, plant introduction, reproduction, incompatibility, sterility, biometrics, selection, hybridization, methods of breeding both self- and cross- pollinated crops, heterosis, synthetic varieties, induced mutations and polyploidy, distant hybridization, quality breeding, ideotype breeding, resistance breeding, breeding for stress resistance, G x E interactions, tissue culture, genetic engineering, molecular breeding, genomics, gene action and varietal release. The book’s content addresses the needs of students worldwide. Modern methods like molecular breeding and genomics are dealt with extensively so as to provide a firm foundation and equip readers to read further advanced books. Each chapter discusses the respective subject as comprehensively as possible, and includes a section on further reading at the end. Info-boxes highlight the latest advances, and care has been taken to include nearly all topics required under the curricula of MS programs. As such, the book provides a much-needed reference guide for MS students around the globe.
This book contains the papers and posters presented at the Eucarpia Fruit Breeding Section Meeting held at Wädenswil/Einsiedeln, Switzerland from August 30 to September 3, 1993. It gives an overview of the latest trends in temperate fruit breeding in Europe and overseas. Three subjects were considered in special workshops: durability of scab resistance in apple, biotechnology and molecular markers. One important aim of modern fruit breeding is stable resistance to pests and diseases. Molecular markers might help to identify the genetic basis of important characters related to disease and pest resistance and components of yield and quality. Gene transfer has been successfully applied in several fruit species. However, public opinion in many countries does not favour this new technology and its products. Despite these new approaches, traditional breeding methods still predominate; many aspects of traditional breeding are considered in this book. Genetic resources and their exploitation are dealt with in a special chapter. Aspects of breeding minor crops such as walnut, almond, hippophae, cornel, etc. are also considered. Progress in Temperate Fruit Breeding is meant for fruit breeders, pomologists, lecturers, students and growers.
Mutation breeding has been introduced into modern plant breeding in the early 1940's. In spite of pessimistic predictions, the application of experimental mutagenesis has led to encouraging results demonstrating that mutation breeding is a well-functioning method in many crops. So far, more than 500 varieties, developed by means of induced mutations, have been officially released; others have been approved for registration. Many mutants with characters of agronomic interest cannot be utilized directly because of their unsatisfying yielding capacities, or of other negative traits which are partly due to the pleiotropic action of the mutant genes. Sometimes their negative selection value can be overcome by transferring them into the genomes of other varieties. According to experience available, the efficiency of mutant genes can conSiderably vary depending on the genotypic background in which they become effective. The interactions between mutant genes and genotypic back ground cannot be predicted. Therefore, mutants with valuable traits should be crossed with many varieties and strains in order to discern positive and negative interactions. In this way, genotypes can be selected in which the mutant gene is able to express its action without showing negative by-effects. This procedure has been used for about 10 years by combining the methods of mutation and crossbreeding. Mutation breeding is predominantly used in annual diploid and allo polyploid self-fertilizing crops, while it causes much more difficulties in cross-pollinating species.
Genetic variability is an important parameter for plant breeders in any con ventional crop improvement programme. Very often the desired variation is un available in the right combination, or simply does not exist at all. However, plant breeders have successfully recombined the desired genes from cultivated crop gerrnplasm and related wild species by sexual hybridization, and have been able to develop new cultivars with desirable agronomie traits, such as high yield, disease, pest, and drought resistance. So far, conventional breeding methods have managed to feed the world's ever-growing population. Continued population growth, no further scope of expanding arable land, soil degradation, environ mental pollution and global warrning are causes of concern to plant biologists and planners. Plant breeders are under continuous pressure to improve and develop new cultivars for sustainable food production. However, it takes several years to develop a new cultivar. Therefore, they have to look for new technologies, which could be combined with conventional methods to create more genetic variability, and reduce the time in developing new cultivars, with early-maturity, and improved yield. The first report on induced mutation of a gene by HJ. Muller in 1927 was a major mi1estone in enhancing variation, and also indicated the potential applica tions of mutagenesis in plant improvement. Radiation sources, such as X-rays, gamma rays and fast neutrons, and chemical mutagens (e. g. , ethyl methane sulphonate) have been widely used to induce mutations.
The book is an excellent reference collection of the research conducted by different workers on induced mutagenesis, worldwide, for more than 80 years. One can get almost all mutation breeding references at one place. The book gives a coherent and concise account of all the important and relevant aspects related to induced mutagenesis with an emphasis on recent developments in the field of crop improvement. The references have been arranged crop wise and important topic wise which deal with not only classical mutation breeding but also spontaneous mutations, somaclonal variations, nanoparticles, and relevant modern aspects. The book highlights 22 chapters covering holistic information on almost all important components such as radiosensitivity, chromosomal and morphological abnormalities, detection of mutation, management of chimera, present status of mutation etc.) of Mutation Breeding. Chapters are very informative, and one can follow the references on crop and aspect basis since the start of mutation breeding work. This book is an excellent resource for researchers and students for understanding proper applications of induced mutations in crop improvement and biological research. It is of interest and useful to graduate and postgraduate students, horticulturists, floriculturists, agricultural scientists, and breeders related to crop improvement program.