Download Free Polyploid Population Genetics And Evolution From Theory To Practice Book in PDF and EPUB Free Download. You can read online Polyploid Population Genetics And Evolution From Theory To Practice and write the review.

Genetics and Evolution of Infectious Diseases, Third Edition discusses the evolving field of infectious diseases and their continued impact on the health of populations, especially in resource-limited areas of the world where they must confront the dual burden of death and disability due to infectious and chronic illnesses. Although substantial gains have been made in public health interventions for the treatment, prevention, and control of infectious diseases, in recent decades the world has witnessed the emergence of the human immunodeficiency virus (HIV) and the COVID-19 pandemic, increasing antimicrobial resistance, and the emergence of many new bacterial, fungal, parasitic, and viral pathogens. Fully updated and revised, this new edition presents the consequences of such diseases, the evolution of infectious diseases, the genetics of host-pathogen relationship, and the control and prevention strategies that are, or can be, developed. This book offers valuable information to biomedical researchers, clinicians, public health practitioners, decisions-makers, and students and postgraduates studying infectious diseases, microbiology, medicine, and public health that is relevant to the control and prevention of neglected and emerging worldwide diseases. - Takes an integrated approach to infectious diseases - Provides the latest developments in the field of infectious diseases - Focuses on the contribution of evolutionary and genomic studies for the study and control of transmissible diseases - Includes updated and revised contributions from leading authorities, along with six new chapters
The study of evolution at the molecular level has given the subject of evolutionary biology a new significance. Phylogenetic 'trees' of gene sequences are a powerful tool for recovering evolutionary relationships among species, and can be used to answer a broad range of evolutionary and ecological questions. They are also beginning to permeate the medical sciences. In this book, the authors approach the study of molecular evolution with the phylogenetic tree as a central metaphor. This will equip students and professionals with the ability to see both the evolutionary relevance of molecular data, and the significance evolutionary theory has for molecular studies. The book is accessible yet sufficiently detailed and explicit so that the student can learn the mechanics of the procedures discussed. The book is intended for senior undergraduate and graduate students taking courses in molecular evolution/phylogenetic reconstruction. It will also be a useful supplement for students taking wider courses in evolution, as well as a valuable resource for professionals. First student textbook of phylogenetic reconstruction which uses the tree as a central metaphor of evolution. Chapter summaries and annotated suggestions for further reading. Worked examples facilitate understanding of some of the more complex issues. Emphasis on clarity and accessibility.
Genome Chaos: Rethinking Genetics, Evolution, and Molecular Medicine transports readers from Mendelian Genetics to 4D-genomics, building a case for genes and genomes as distinct biological entities, and positing that the genome, rather than individual genes, defines system inheritance and represents a clear unit of selection for macro-evolution. In authoring this thought-provoking text, Dr. Heng invigorates fresh discussions in genome theory and helps readers reevaluate their current understanding of human genetics, evolution, and new pathways for advancing molecular and precision medicine. - Bridges basic research and clinical application and provides a foundation for re-examining the results of large-scale omics studies and advancing molecular medicine - Gathers the most pressing questions in genomic and cytogenomic research - Offers alternative explanations to timely puzzles in the field - Contains eight evidence-based chapters that discuss 4d-genomics, genes and genomes as distinct biological entities, genome chaos and macro-cellular evolution, evolutionary cytogenetics and cancer, chromosomal coding and fuzzy inheritance, and more
Biology for AP® courses covers the scope and sequence requirements of a typical two-semester Advanced Placement® biology course. The text provides comprehensive coverage of foundational research and core biology concepts through an evolutionary lens. Biology for AP® Courses was designed to meet and exceed the requirements of the College Board’s AP® Biology framework while allowing significant flexibility for instructors. Each section of the book includes an introduction based on the AP® curriculum and includes rich features that engage students in scientific practice and AP® test preparation; it also highlights careers and research opportunities in biological sciences.
The field of plant taxonomy has transformed rapidly over the past fifteen years, especially with regard to improvements in cladistic analysis and the use of new molecular data. The second edition of this popular resource reflects these far-reaching and dramatic developments with more than 3,000 new references and many new figures. Synthesizing current research and trends, Plant Taxonomy now provides the most up-to-date overview in relation to monographic, biodiversity, and evolutionary studies, and continues to be an essential resource for students and scholars. This text is divided into two parts: Part 1 explains the principles of taxonomy, including the importance of systematics, characters, concepts of categories, and different approaches to biological classification. Part 2 outlines the different types of data used in plant taxonomic studies with suggestions on their efficacy and modes of presentation and evaluation. This section also lists the equipment and financial resources required for gathering each type of data. References throughout the book illuminate the historical development of taxonomic terminology and philosophy while citations offer further study. Plant Taxonomy is also a personal story of what it means to be a practicing taxonomist and to view these activities within a meaningful conceptual framework. Tod F. Stuessy recalls the progression of his own work and shares his belief that the most creative taxonomy is done by those who have a strong conceptual grasp of their own research.
The impact of molecular genetics on plant breeding and, consequently, agri culture, is potentially enonnous. Understanding and directing this potential im pact is crucial because of the urgent issues that we face concerning sustainable agriculture for a growing world population as well as conservation of the world's rapidly dwindling plant genetic resources. This book is largely devoted to the applications of genetic markers that have been developed by the application of molecular genetics to practical problems. These are known as DNA markers. They have gained a certain notoriety in foren sics, but can be used in a variety of practical situations. We are going through a period of accelerated breakthroughs in molecular ge netics. Therefore, the authors of each chapter were encouraged to speculate about both current bottlenecks and the future of their subfields of research. We can cer tainly apply molecular genetic tools and approaches to help resolve crucial ge netic resource problems that face humanity. However, little has been discussed with respect to when or how we should use such tools, nor to who specifically should use them; therefore, social and economic analyses are important in the planning stages of projects that are aimed at practical results.
"What underlying forces are responsible for the observed patterns of variability, given a collection of DNA sequences?" In approaching this question a number of probability models are introduced and anyalyzed.Throughout the book, the theory is developed in close connection with data from more than 60 experimental studies that illustrate the use of these results.
Encyclopedia of Evolutionary Biology, Four Volume Set is the definitive go-to reference in the field of evolutionary biology. It provides a fully comprehensive review of the field in an easy to search structure. Under the collective leadership of fifteen distinguished section editors, it is comprised of articles written by leading experts in the field, providing a full review of the current status of each topic. The articles are up-to-date and fully illustrated with in-text references that allow readers to easily access primary literature. While all entries are authoritative and valuable to those with advanced understanding of evolutionary biology, they are also intended to be accessible to both advanced undergraduate and graduate students. Broad topics include the history of evolutionary biology, population genetics, quantitative genetics; speciation, life history evolution, evolution of sex and mating systems, evolutionary biogeography, evolutionary developmental biology, molecular and genome evolution, coevolution, phylogenetic methods, microbial evolution, diversification of plants and fungi, diversification of animals, and applied evolution. Presents fully comprehensive content, allowing easy access to fundamental information and links to primary research Contains concise articles by leading experts in the field that ensures current coverage of each topic Provides ancillary learning tools like tables, illustrations, and multimedia features to assist with the comprehension process