Download Free Polyoxometalates In Catalysis Biology Energy And Materials Science Book in PDF and EPUB Free Download. You can read online Polyoxometalates In Catalysis Biology Energy And Materials Science and write the review.

Polyoxometalates are anionic metal-oxo nanoclusters, which constitute a unique class of compounds owing to their rich solution equilibria and their unique compositional, electronic, reactive, and structural diversity. This book reviews metal-oxide cluster chemistry by covering topics ranging from fundamental aspects (i.e., structure, properties, self-assembly processes, derivatization) to functional materials that incorporate these molecular units, as well as their applications in the fields of current socioeconomic interest, such as energy storage systems, catalysis, molecular electronics, and biomedicine. Edited by prominent researchers in the field of polymer and polyoxometalate chemistries, the book compiles contributions from some of the most distinguished and promising scientists worldwide in such a way that it will appeal to a general readership involved in research areas related to chemistry and materials science.
This book presents the synthetic methodologies as well as the properties and potential usage of various ruthenium-containing materials. Starting from the first examples of 'ruthenopolymers' reported in the 1970s to the 3D architectures now synthesized, these materials have shown their importance far beyond fundamental polymer science. As well as highlighting the remarkable properties and versatile applications, this book also addresses a key question related to the applications of such heavy-metal-containing materials from the perspective of achieving a sustainable future. This book is of interest to both materials scientists and chemists in academia and industry.
Chemical Modelling: Applications and Theory comprises critical literature reviews of molecular modelling, both theoretical and applied. Molecular modelling in this context refers to modelling the structure, properties and reactions of atoms, molecules & materials. Each chapter is compiled by experts in their fields and provides a selective review of recent literature. With chemical modelling covering such a wide range of subjects, this Specialist Periodical Report serves as the first port of call to any chemist, biochemist, materials scientist or molecular physicist needing to acquaint themselves of major developments in the area. Specialist Periodical Reports provide systematic and detailed review coverage in major areas of chemical research. Compiled by teams of leading authorities in the relevant subject areas, the series creates a unique service for the active research chemist, with regular, in-depth accounts of progress in particular fields of chemistry. Subject coverage within different volumes of a given title is similar and publication is on an annual or biennial basis. Current subject areas covered are Amino Acids, Peptides and Proteins, Carbohydrate Chemistry, Catalysis, Chemical Modelling. Applications and Theory, Electron Paramagnetic Resonance, Nuclear Magnetic Resonance, Organometallic Chemistry. Organophosphorus Chemistry, Photochemistry and Spectroscopic Properties of Inorganic and Organometallic Compounds. From time to time, the series has altered according to the fluctuating degrees of activity in the various fields, but these volumes remain a superb reference point for researchers.
Masakatsu Shibasaki, Motomu Kanai, Shigeki Matsunaga, and Naoya Kumagai: Multimetallic Multifunctional Catalysts for Asymmetric Reactions.- Takao Ikariya: Bifunctional transition metal-based molecular catalysts for asymmetric syntheses.- Chidambaram Gunanathan and David Milstein: Bond Activation by Metal-Ligand Cooperation: Design of ”Green” Catalytic Reactions Based on Aromatization-Dearomatization of Pincer Complexes.- Madeleine C. Warner, Charles P. Casey, and Jan-E. Bäckvall: Shvo’s Catalyst in Hydrogen Transfer Reactions.- Noritaka Mizuno, Keigo Kamata, and Kazuya Yamaguchi: Liquid-Phase Selective Oxidation by Multimetallic Active Sites of Polyoxometalate-Based Molecular Catalysts.- Pingfan Li and Hisashi Yamamoto: Bifunctional Acid Catalysts for Organic Synthesis.- Jun-ichi Ito, Hisao Nishiyama: Bifunctional Phebox Complexes for Asymmetric Catalysis.
This book joins an international and interdisciplinary group of leading experts on the biomedical, energy and environmental applications of Metal-Organic Frameworks (MOFs). The resulting overview covers everything from the environmentally friendly and scale up synthesis of MOFs, their application in green energy generation and storage, and water purification to their use as drug delivery systems, biosensors, and their association with relevant macromolecules (genes, enzymes). This book is focused on the interest of MOFs in applications such as the leading –edge environmental (energy-related) and biomedical fields. The potential of MOFs in these areas is currently progressing at a fast pace, since the wide possibilities that MOFs offer in terms of composition, topology, incorporation of active species (in their porosity, on their external surface or within the framework), and post-synthetic modifications, among others. The aim here is to provide future research goals that emphasize relevant nuances to this class of materials as a whole.
Atomically Precise Metal Clusters Thorough discussion on how surface modification and self-assembly play roles in the atomically precise formation and property tailoring of molecular clusters Atomically Precise Metal Clusters: Surface Engineering and Hierarchical Assembly summarizes and discusses the surface modification, assembly, and property tailoring of a wide variety of nanoclusters, including the well-explored metal clusters, addressing the structure–property relationships throughout. The atomic-level control in synthesis, new types of structures, and physical/chemical properties of nanoclusters are illustrated in various chapters. The controlled modification and assembly of metal nanoclusters is expected to have a major impact on future nanoscience research and other areas, with distinctive metal cluster-based function materials with precise structures uncovering exciting opportunities in both fundamental research and practical applications. Written by a highly qualified academic with significant research experience in the field, Atomically Precise Metal Clusters includes information on: Ligand engineering and assembly of coinage metal nanoclusters such as gold, silver, and copper Recent advances in post-modification of polyoxometalates and small transition metal chalcogenide superatom clusters Synthesis and assembly of cadmium chalcogenide supertetrahedral clusters and modification and assembly of Fe-S clusters Indium phosphide magic-sized clusters, ligand-tailoring platinum and palladium clusters, and metal oxo clusters (MOCs) Enabling access to desired functions in metal clusters for catalysis, optics, biomedicine, and other fields through surface engineering and supramolecular assembly A timely and comprehensive book that summarizes the recent progress in the surface modification and self-assembly of metal nanoclusters, Atomically Precise Metal Clusters provides essential guidance for graduate students and advanced researchers in material science, chemistry, biomedicine, and other disciplines.
Conversion of Water and CO2 to Fuels usingSolar Energy Comprehensive Resource for Understanding the Emerging Solar Technologies for Hydrogen Generation via Water Splitting and Carbon-based Fuel Production via CO2 Recycling Fossil fuel burning is the primary source of carbon in the atmosphere. The realization that such burning can harm the life on our planet, has led to a surge in research activities that focus on the development of alternative strategies for energy conversion. Fuel generation using solar energy is one of the most promising approaches that has received widespread attention. The fuels produced using sunlight are commonly referred to as “solar fuels.” This book provides researchers interested in solar fuel generation a comprehensive understanding of the emerging solar technologies for hydrogen generation via water splitting and carbon-based fuel production via CO2 recycling. The book presents the fundamental science, technologies, techno-economic analysis, and most importantly, the materials that are being explored to establish artificial methods of fuel production using solar energy. For the rapid advancement of the field, it is necessary for researchers, particularly for those who are new to the field, to have clear knowledge of various materials studied so far and their performance. For this reason, almost half of the book is dedicated to the discussions on materials and properties. Key topics discussed in the book include: Photocatalytic/photoelectrochemical processes that use semiconductor photocatalysts, including both ceramic and non-ceramic materials Photovoltaic assisted electrochemical processes Solar thermochemical processes Molecular photosynthesis Researchers and professionals in the fields of energy and materials and closely related science and engineering disciplines could use this book to aquire clear insights on both mainstream solar fuel technologies and those in the developmental stages.
Polyoxometalates (POMs) form a large, distinctive class of molecular inorganic compounds of unrivaled electronic versatility and structural variation, with impacts ranging from chemistry, catalysis, and materials science to biology, and medicine. This book covers the basic principles governing the structure, bonding and reactivity of these metal-oxygen cluster anions and the major developments in their molecular science. The book comprises three sections. The first covers areas ranging from topological principles via synthesis and stability to reactivity in solution. It also focuses on the physical methods currently used to extract information on the molecular and electronic structures as well as the physical properties of these clusters. The second part reviews different types of POMs, focusing on those systems that currently impact other areas of interest, such as supramolecular chemistry, nanochemistry and molecular magnetism. The third section is devoted to POM-based materials and their applications and prospects in catalysis and materials science.
Comprehensive Inorganic Chemistry II, Nine Volume Set reviews and examines topics of relevance to today’s inorganic chemists. Covering more interdisciplinary and high impact areas, Comprehensive Inorganic Chemistry II includes biological inorganic chemistry, solid state chemistry, materials chemistry, and nanoscience. The work is designed to follow on, with a different viewpoint and format, from our 1973 work, Comprehensive Inorganic Chemistry, edited by Bailar, Emeléus, Nyholm, and Trotman-Dickenson, which has received over 2,000 citations. The new work will also complement other recent Elsevier works in this area, Comprehensive Coordination Chemistry and Comprehensive Organometallic Chemistry, to form a trio of works covering the whole of modern inorganic chemistry. Chapters are designed to provide a valuable, long-standing scientific resource for both advanced students new to an area and researchers who need further background or answers to a particular problem on the elements, their compounds, or applications. Chapters are written by teams of leading experts, under the guidance of the Volume Editors and the Editors-in-Chief. The articles are written at a level that allows undergraduate students to understand the material, while providing active researchers with a ready reference resource for information in the field. The chapters will not provide basic data on the elements, which is available from many sources (and the original work), but instead concentrate on applications of the elements and their compounds. Provides a comprehensive review which serves to put many advances in perspective and allows the reader to make connections to related fields, such as: biological inorganic chemistry, materials chemistry, solid state chemistry and nanoscience Inorganic chemistry is rapidly developing, which brings about the need for a reference resource such as this that summarise recent developments and simultaneously provide background information Forms the new definitive source for researchers interested in elements and their applications; completely replacing the highly cited first edition, which published in 1973