Download Free Polymetallic Coatings To Control Biofouling In Pipelines Book in PDF and EPUB Free Download. You can read online Polymetallic Coatings To Control Biofouling In Pipelines and write the review.

Most of the pipelines used for the transport of various fluids are susceptible to the formation of biofilms, and the undesirable accumulation of microorganisms in pipelines leads to biodeterioration and increases the maintenance cost of the pipelines. This book focuses on nanostructured polymetallic coatings for corrosion and biofouling protection in offshore oil and gas pipelines, marine pipelines, ship structures and port facilities, and corrosion resistance surfaces of several engineered structures. Considering various reasons of biofouling in pipelines that transport crude and refined petroleum, gas, biofuels, and other fluids including sewage, slurry, and water for drinking or irrigation, the underlying mechanism is thoroughly explained. A comparison of various protective techniques is also highlighted for the choice of methods for specific applications. Features: Provides information on biofouling control with broad significance and applicability in various industrial and research areas. Discusses microbially induced corrosion on biofuel transporting pipelines. Includes data from experiments conducted to overcome biofouling and biocorrosion. Gives out particular attention to metallic coatings and environmental considerations. Explores novel technologies preventing biofouling on metallic and polymeric substrates. This book is for researchers and graduate students in Coatings and Paints, Microbiology, Bioprocess Engineering, Biotechnology, Industrial Engineering, Mechanical and Chemical Engineering, Marine Engineering, Surface and Corrosion Engineering, and Water and Wastewater Treatment.
This book comprising of thirty-two parts, is very interesting and could serve as a guide for young teachers. It can also be an effective tool for policy makers. The author, with his wide teaching experience, is confident that by giving autonomy to students the restricting structures in the system can be removed entirely. He presents his personal experiences as a Teacher and a chief administrator and applies practical wisdom to critical issues that administrative leaders face. The arguments and insights presented in this book are thought-provoking, like-learner-focused and they discuss teaching kindness through service to the society. Kids don't learn from people they don't like! Kids do what we do, not what we say. The author gives valuable suggestions to enhance the teaching and learning experience – inspiring out-of-the-box thinking, encouraging the creative ability of students, relevance of social network, creating research skills even among middle-school students in the classrooms, importance of physical education in schools, significance of morning assembly and so on.
This book covers the principles, underlying mechanisms, thermodynamic functions, kinetics and modeling aspects of sustainable technologies, particularly from the standpoint of applying physical, chemical and biological processes for the treatment of wastewater polluted with heavy metals. Particular emphasis has been given to technologies that are based on adsorption, electro-coagulation, bio-precipitation, bio-solubilization, phytoremediation and microbial electrolysis. Metal contamination in the environment is one of the persisting global issues. The adverse health effects of heavy metals on human beings and its impact on the environment has been well-documented. Several physico-chemical and biological technologies have been successfully implemented to prevent and control the discharge of industrial heavy metal emissions. On the contrary, metal resource depletion has also accelerated dramatically during the 20th century due to rapid advances in industrial engineering and medical sciences, which requires large amount of raw materials. To meet the global metal demand, in recent years, novel research lines have started to focus on the recovery of metals from metal contaminated waste streams. In order to conflate both metal removal and recovery, new technologies have been successfully tested, both at the lab and pilot-scale. The target audience of this book primarily comprises of research experts, practicing engineers in the field of environmental/chemical technology and graduate students.
This book presents a picture of the advances in the research of theoretical and practical frameworks of wastewater problems and solutions. The book deals with a basic concept and principles of modern biological, chemical and technical approaches to remediate various hazardous pollutants from wastewater. The latest empirical research findings in wastewater treatment are comprehensively discussed. Examples of low-cost technologies are also included. The book is written for professionals, researchers, academics and students wanting to improve their understanding of the strategic role of environmental protection and advanced applied technologies.
New analytical techniques have enhanced current understanding of the behavior of trace and ultratrace elements in the biogeochemical cycling, chemical speciation, bioavailability, bioaccumulation, and as applied to the phytoremediation of contaminated soils. Addressing worldwide regulatory, scientific, and environmental issues, Trace Elements in the Environment explores these frontiers, including biotechnological aspects of metal-binding proteins and peptides and phytoremediation strategies using trees, grasses, crop plants, aquatics, and risks to ecological and human health. Discussing trace elements in the holistic environment, this book covers advances in state-of-the-art analytical techniques, molecular biotechology, and contemporary biotechnology that enhances knowledge of the behavior of trace elements in the biogeosphere and at the cellular and molecular level. The editors and their hand-picked panel of contributors provide authoritative coverage of trace elements in the environment. They highlight cutting-edge applications of emerging strategies and technologies to the problems of trace elements in the environment. The editors discuss emerging areas such as bacterial biosorption of trace elements, processes, and applications of electroremediation of heavy metals-contaminated soils, application of novel nanoporous sorbents for the removal of heavy metals, metalloids, and radionuclides. The book focuses on the effects of increasing levels of trace elements on ecological and human health, evaluates the effectiveness of methods of phytoremediation, and covers risk assessment, pathways, and trace element toxicity. Containing more than 150 illustrations, tables, photographs, and equations, the book's coverage spans the entire body of knowledge available about how and why plants interact with metals and other trace elements.
In FY 1990, Congress directed the Secretary of the Navy to commission a study by the National Academy of Sciences for the production of an integrated technology plan for the evolution of aircraft carriers in the first half of the twenty-first century. The House-Senate conferees emphasized "that the product of this study is to be a technology plan for the evolution of sea bases for the most efficient and economical accommodation of tactical air power in the first half of the twenty-first century". Based on this broad charter of evaluating sea bases, an examination of the floating ocean platform concept was included in the study. The floating ocean platform is a generic description of a large, relatively stationary or slowly mobile, platform that can be positioned in most areas of the ocean, and can serve a variety of purposes. The present report was the author's input to the study. It was based on technical analyses, literature reviews and surveys, and discussions/visits with the main groups and organizations involved in developing the floating ocean platform. All discussion material was unclassified, as are the contents of this report. All the external inputs and discussions, too numerous to mention, made this report possible, and are greatly appreciated. The first part of this report is the summary narrative that was submitted by the author to the Technology Group of the study. The second part is the viewgraphs that were presented to the Technology Group by the author on 12 February 1991. The third part is a selected bibliography of studies on the floating ocean platform over the past two decades, with over three thousand references identified.
Nanotechnology is considered as one of the emerging fields of science. It has applications in different biological and technological fields which deal with the science of materials at nanoscale (10-9). On the other hand, biotechnology is another field that deals with contemporary challenges. Nanobiotechnology fills the gap between these two fields. It merges physical, chemical, and biological principles in a single realm. This combination opens up new possibilities. At nanoscale dimensions, it creates precise nanocrystals and nanoshells. Integrated nanomaterials are used with modified surface layers for compatibility with living systems, improved dissolution in water, or biorecognition leading to enhanced end results in biotechnological systems. These nanoparticles can also be hybridized with additional biocompatible substances in order to amend their qualities to inculcate novel utilities. Nanobiotechnology is used in bioconjugate chemistry by coalescing up the functionality of non-organically obtained molecular components and biological molecules in order to veil the immunogenic moieties for targeted drug delivery, bioimaging and biosensing. This book blends the science of biology, medicine, bioinorganic chemistry, bioorganic chemistry, material and physical sciences, biomedical engineering, electrical, mechanical, and chemical science to present a comprehensive range of advancements. The development of nano-based materials has made for a greater understanding of their characterization, using techniques such as transmission electron microscope, FTIR, X-ray diffraction, scanning electron microscope EDX, and so on. This volume also highlights uses in environmental remediation, environmental biosensors and environmental protection. It also emphasizes the significance of nanobiotechnology to a series of medical applications viz., diagnostics, and therapeutics stem cell technology, tissue engineering enzyme engineering, drug development and delivery. In addition this book also offers a distinctive understanding of nanobiotechnology from researchers and educators and gives a comprehensive facility for future developments and current applications of nanobiotechnology.