Download Free Polymers And Light Book in PDF and EPUB Free Download. You can read online Polymers And Light and write the review.

S. Georgiou: Laser Cleaning Methodologies of Polymer Substrates; T. Lippert: Laser Application of Polymers; J. Krueger, W. Kautek: Ultrashort Pulse Laser Interactions with Polymers and Dielectrics; Y. Zhang: Synchrotron Radiation Direct Photo-Etching of Polymers.
This first book to focus on the important and topical effect of light on polymeric materials reflects the multidisciplinary nature of the topic, building a bridge between polymer chemistry and physics, photochemistry and photophysics, and materials science. Written by one experienced author, a consistent approach is maintained throughout, covering such applications as nonlinear optical materials, core materials for optical waveguides, photoresists in the production of computer chips, photoswitches and optical memories. Advanced reading for polymer, physical and organic chemists, manufacturers of optoelectronic devices, chemical engineers, and materials scientists.
Polarized Light in Liquid Crystals and Polymers deals with the linear optics of birefringent materials, such as liquid crystals and polymers, and surveys light propagation in such media with special attention to applications. It is unique in treating light propagation in micro- and nanostructured birefringent optical elements, such as lenses and gratings composed of birefringent materials, as well as the spatial varying anisotropic structures often found in miniaturized liquid crystal devices.
Polymers for Light-Emitting Devices and Displays provides an in-depth overview of fabrication methods and unique properties of polymeric semiconductors, and their potential applications for LEDs including organic electronics, displays, and optoelectronics. Some of the chapter subjects include: • The newest polymeric materials and processes beyond the classical structure of PLED • Conjugated polymers and their application in the light-emitting diodes (OLEDs & PLEDs) as optoelectronic devices. • The novel work carried out on electrospun nanofibers used for LEDs. • The roles of diversified architectures, layers, components, and their structural modifications in determining efficiencies and parameters of PLEDs as high-performance devices. • Polymer liquid crystal devices (PLCs), their synthesis, and applications in various liquid crystal devices (LCs) and displays. • Reviews the state-of-art of materials and technologies to manufacture hybrid white light-emitting diodes based on inorganic light sources and organic wavelength converters.
This book combines theoretical explanations of the reactions of light and polymeric materials with development of light responsive polymeric materials for various practical applications. Photo associated reactions and light responsive materials have great potential to improve existing industrial processes, including capturing solar energy. This book presents a range of reactions and materials with some of the most exciting current and future applications.
Light scattering is a very powerful method for characterizing the structure of polymers and nanoparticles in solution. As part of the Springer Laboratory series, this book provides a simple-to-read and illustrative textbook probing the seemingly very complicated topic of light scattering from polymers and nanoparticles in dilute solution, and goes further to cover some of the latest technical developments in experimental light scattering.
This reference guide brings together a wide range of essential data on the effects of weather and UV light exposure on plastics and elastomers, enabling engineers to make optimal material choices and design decisions. In both normal and extreme environments, outdoor use has a variety of effects on different plastics and elastomers, including discoloring and brittleness. The data is supported by explanations of real-world engineering applications. The data tables in this book are supported by examples of real-world applications, enabling engineers and scientists to select the right materials for a given situation, across a wide range of sectors including construction, packaging, signage, consumer (e.g. toys, outdoor furniture), automotive and aerospace, defense, etc. The third edition includes new text chapters that provide the fundamental knowledge required to make best use of the data. Author Larry McKeen has also added detailed descriptions of the effect of weathering on the most common polymer classes such as polyolefins, polyamides, polyesters, elastomers, fluoropolymers, biodegradable plastics, etc., making this book an invaluable design guide as well as an industry standard data source. - Essential data and practical guidance for engineers and scientists working with plastics in outdoor applications and products - New introductory chapters on weathering processes and the effect of light and heat on plastics - 25% new data
A comprehensive, practical approach to three powerful methods of polymer analysis and characterization This book serves as a complete compendium of three important methods widely used for the characterization of synthetic and natural polymers—light scattering, size exclusion chromatography (SEC), and asymmetric flow field flow fractionation (A4F). Featuring numerous up-to-date examples of experimental results obtained by light scattering, SEC, and A4F measurements, Light Scattering, Size Exclusion Chromatography and Asymmetric Flow Field Flow Fractionation takes an all-in-one approach to deliver a complete and thorough explanation of the principles, theories, and instrumentation needed to characterize polymers from the viewpoint of their molar mass distribution, size, branching, and aggregation. This comprehensive resource: Is the only book gathering light scattering, size exclusion chromatography, and asymmetric flow field flow fractionation into a single text Systematically compares results of size exclusion chromatography with results of asymmetric flow field flow fractionation, and how these two methods complement each other Provides in-depth guidelines for reproducible and correct determination of molar mass and molecular size of polymers using SEC or A4F coupled with a multi-angle light scattering detector Offers a detailed overview of the methodology, detection, and characterization of polymer branching Light Scattering, Size Exclusion Chromatography and Asymmetric Flow Field Flow Fractionation should be of great interest to all those engaged in the polymer analysis and characterization in industrial and university research, as well as in manufacturing quality control laboratories. Both beginners and experienced can confidently rely on this volume to confirm their own understanding or to help interpret their results.
This book reviews the cutting-edge significant research in the field of smart light-responsive materials based on azobenzene polymers and liquid crystals. Emphasis is placed on the discovery of new phenomena from the past 5 years, their underlying mechanisms, new functionalities, and properties achieved through rational design. Edited by leading authorities in the field, Zhao and Ikeda, the chapters are authored by an internationally-recognized team of experts from North America, Europe, and Asia. Smart Light-Responsive Materials will serve to catalyze new research that will lead this field over the next 5-10 years.
Polymers for Light-Emitting Devices and Displays provides an in-depth overview of fabrication methods and unique properties of polymeric semiconductors, and their potential applications for LEDs including organic electronics, displays, and optoelectronics. Some of the chapter subjects include: • The newest polymeric materials and processes beyond the classical structure of PLED • Conjugated polymers and their application in the light-emitting diodes (OLEDs & PLEDs) as optoelectronic devices. • The novel work carried out on electrospun nanofibers used for LEDs. • The roles of diversified architectures, layers, components, and their structural modifications in determining efficiencies and parameters of PLEDs as high-performance devices. • Polymer liquid crystal devices (PLCs), their synthesis, and applications in various liquid crystal devices (LCs) and displays. • Reviews the state-of-art of materials and technologies to manufacture hybrid white light-emitting diodes based on inorganic light sources and organic wavelength converters.