Download Free Polymerized Ionic Liquids Book in PDF and EPUB Free Download. You can read online Polymerized Ionic Liquids and write the review.

The series covers the fundamentals and applications of different smart material systems from renowned international experts.
Polymerized ionic liquids are an emerging class of functional materials with ionic liquid moieties covalently attached to a polymer backbone. As such, they synergistically combine the structural hierarchy of polymers with the versatile physicochemical properties of ionic liquids. Unlike other ion-containing polymers that are typically constrained to high glass transition temperatures, polymerized ionic liquids can exhibit low glass transition temperatures due to weak electrostatic interactions even at high charge fractions. Promising applications relevant to electrochemical energy conversion and CO2 capture and sequestration have been demonstrated for polymerized ionic liquids, but a molecular design strategy that allows for elucidation of their structure-property relationships is yet to be developed. A combination of anionic polymerization, click chemistry, and ion metathesis allows for fine and independent control over polymer properties including the number of repeat units, fraction of ionic liquid moieties, composition, and architecture. This strategy has been exploited to elucidate the effect of lamellar domain spacing on the ionic conductivity of block copolymers based on hydrated protic polymerized ionic liquids. The conductivity relationship demonstrated in this study suggests that a mechanically robust material can be designed without compromising its ability to transport ions. The vast set of ion pair combinations in polymerized liquids provides a unique opportunity to develop functional materials where properties can be controlled with subtle changes in molecular structure via ion metathesis. We illustrate the case of a polymerized ionic liquid that combines the low toxicity and macromolecular dimensions of poly(ethylene glycol) with the magnetic functionality of ion pairs containing iron(III). This material can yield novel theranostic agents with controlled residence time within the human body, and paramagnetic functionality to enhance 1H nuclei relaxation rate required for medical imaging. Finally, the molecular design strategy is expanded to incorporate ion pairs based on metal-ligand coordination bonds between cations and imidazole moieties tethered to the polymer backbone. This illustrates a general approach for using chelating polymers with appropriate metal-ligand interactions to design high conductivity and tunable modulus polymer electrolytes.
This book summarizes the latest knowledge in the science and technology of ionic liquids and polymers in different areas. Ionic liquids (IL) are actively being investigated in polymer science and technology for a number of different applications. In the first part of the book the authors present the particular properties of ionic liquids as speciality solvents. The state-of-the art in the use of ionic liquids in polymer synthesis and modification reactions including polymer recycling is outlined. The second part focuses on the use of ionic liquids as speciality additives such as plasticizers or antistatic agents. The third part examines the use of ionic liquids in the design of functional polymers (usually called polymeric ionic liquids (PIL) or poly(ionic liquids)). Many important applications in diverse scientific and industrial areas rely on these polymers, like polymer electrolytes in electrochemical devices, building blocks in materials science, nanocomposites, gas membranes, innovative anion sensitive materials, smart surfaces, and a countless set range of emerging applications in different fields such as energy, optoelectronics, analytical chemistry, biotechnology, nanomedicine or catalysis.
The second edition is based on the original book, which has been revised, updated and expanded in order to cover the latest information on this rapidly growing field. The book begins with a description of general and electrochemical properties of ionic liquids and continues with a discussion of applications in biochemistry, ionic devices, functional design and polymeric ionic liquids. The new edition includes new chapters on Li ion Batteries and Actuators, as well as a revision of existing chapters to include a discussion on purification and the effects of impurities, adsorption of ionic liquids on interfaces and on the electrochemical double layer, among other topics.
The body of work on polymerized ionic liquids has been growing rapidly in recent years as researchers expand the synthesis space to achieve novel membrane materials with high conductivity, excellent mechanical stability, and high transference number. Despite progress in identifying specific new polymers and useful properties, there has been limited agreement over the mechanism for ion transport in these materials. It is essential that we resolve said mechanism for polymerized-ionic-liquid conduction, with the goal of streamlining future material design. Molecular dynamics is an excellent tool for analyzing local coordination behavior, ion-hopping pathways, and other phenomena of length- and time-scales that are currently inaccessible to direct experimental observation. Ion transport is seen to proceed via a "climbing the ladder" mechanism involving the formation and breaking of ion-association pairs with, on average, four polymerized ions from two polymer chains. This results in a link between ion-association lifetime and diffusivity for chemically similar polymerized ionic liquids, a feature that distinguishes polymerized ionic liquids from a broad class of polymer electrolytes and low fragility ionomers. This is also shown to be the case for a set of backbone-polymerized ionic liquids, when compared to a chemically similar pendent-polymerized ionic liquid. This is particularly interesting because the pendent architectural motif proves to have significantly higher reversibility of ion-hopping events. The application of design rules inspired by this research has already led to the experimental discovery of highly decoupled polymerized ionic liquids with excellent conductivity at ambient temperature. Parametric simulation studies of poly(vinylimidazolium) polymerized ionic liquids and counterion variants have revealed a decoupling of ion mobility from polymer segmental dynamics. Small counterions are generally more decoupled, but results show that size is not the sole arbiter. For this set of different chemical components, encompassed by the anionic study, ion-association relaxation time, rather than lifetime, was proven to better correlate with diffusivity. Similar physics is observed between polymerized ionic liquids and salt-doped polymerized zwitterions for the population of mobile ions whose polymerized counter-charge is located on the end of a monomeric pendant. However, the cage-relaxation timescale appears to correlate better with diffusivity for the opposite ion in such materials
Recent Advances in Ionic Liquids contains research on the preparation, characterization, and potential applications of stable ionic liquids (ILs). ILs are a class of low- and stable-melting point, ionic compounds that have a variety of properties allowing many of them to be sustainable green solvents. It is promising novel research from top to bottom and has received a lot of interest over the last few decades. It covers the advanced topics of physical, catalytic, chemical, polymeric, and potential applications of ILs. This book features interesting reports on cutting-edge science and technology related to the preparation, characterization, polymerization, and potential applications of ILs. This potentially unique work offers various approaches on the R
A comprehensive resource on ionic polymer metal composites (IPMCs) edited by the leading authority on the subject.
Advanced Applications of Ionic Liquids discusses the intersection of nanotechnology with ionic liquids (ILs) and materials, along with opportunities for advanced engineering applications in various research fields. Novel materials at nano scales with ILs creates an upsurge in the thermal and electrochemical constancy of the nano scale particles, making them ideal for industrial applications. The implementation of ILs at nano scale includes an interaction of constituents, which is beneficial for electron transfer reactions. These new composites can be implemented as sensors, electronics, catalysts and photonics. Including ILs in polymer composites enhance electrochemical consistency, govern particle size, upsurge conductivity, reduce toxicity, and more. This book is a comprehensive reference for researchers working with IL based technologies for environmental and energy applications. Covers all industrial aspects and advanced applications of ionic liquids (ILs) Discusses the advanced applications of ILs across multiple fields, including industrial chemistry and chemical engineering Includes a discussion of the use of ionic liquids in functional polymers, with applications for catalysis, energy conservation, sensors, and more
Capillary Electromigration Separation Methods is a thorough, encompassing reference that not only defines the concept of contemporary practice, but also demonstrates its implementation in laboratory science. Chapters are authored by recognized experts in the field, ensuring that the content reflects the latest developments in research. Thorough, comprehensive coverage makes this the ideal reference for project planning, and extensive selected referencing facilitates identification of key information. The book defines the concept of contemporary practice in capillary electromigration separation methods, also discussing its applications in small mass ions, stereoisomers, and proteins. Edited and authored by world-leading capillary electrophoresis experts Presents comprehensive coverage on the subject Includes extensive referencing that facilitates the identification of key research developments Provides more than 50 figures and tables that aid in the retention of key concepts
This book includes manuscripts from well-recognized international research groups that have taken different approaches to using ionic liquids in a variety of polymer applications. The chapters on polymer synthesis cover traditional free radical polymerizations, which have been shown to progress rapidly and yield high molecular weight polymers, and reverse atom transfer polymerizations. The ability to tune molecular weights and synthesize block copolymers has been attributed to long free radical lifetimes in ionic liquids. Other chapters cover a variety of uses for ionic liquids in polymer processing, designing specific material properties, and creating novel composites, such as ion gels and ionic liquid-carbon nanotube constructs. This book represents a new and exciting field in polymer chemistry and physics, and is growing rapidly as more fundamental knowledge of ionic liquids is uncovered.