Download Free Polymeric Membranes For Water Purification And Gas Separation Book in PDF and EPUB Free Download. You can read online Polymeric Membranes For Water Purification And Gas Separation and write the review.

Various organic and synthetic polymers are important materials for the removal of organic and inorganic pollutants from wastewater and the separation of gases. The book discusses various types of membranes for microfiltration, ultrafiltration, nanofiltration, reverse osmosis, forward osmosis etc. A number of nanomaterials are available for the modification of polymeric membranes. Keywords: Polymeric Membrane, Water Purification, Water Softening, Water Desalination, Gas Separation, Osmosis Membranes, Microfiltration, Ultrafiltration, Nanofiltration, Carbon Nanotube, Nanosheets, MOFs, Porous Organic Cages, Titanium Dioxide, Zinc Oxide, Mesoporous Silica Nanoparticles, O2/N2 Separation, CO2/CH4 Separation, H2/N2 Separation.
Synthetic Polymeric Membranes for Advanced Water Treatment, Gas Separation, and Energy Sustainability is a cutting-edge guide that focuses on advanced water treatment applications, covering oily wastewater treatment, desalination, removal of dyes and pigments, photodegradation of organic hazardous materials, heavy metal removal, removal and recovery of nutrients, and volatile organic compounds. Other sections examine the area of gas separation, including acidic gas removal, oxygen enrichment, gas and vapor separation, hydrogen separation, and gas sensing. Final sections cover applications for sustainable energy usage, including the use of synthetic polymer membranes in proton exchange membrane fuel cells (PEMFCs), and more. This is a highly valuable guide for researchers, scientists, and advanced students, working with polymer membranes and films, and across polymer science, polymer chemistry, materials science, chemical e Explains the design, preparation and characterization of synthetic polymer-based membranes for advanced applications Provides a clear picture of the state-of-the-art in the field, including novel fabrication approaches and the latest advances in physico-chemical characterizations Supports the development and implementation of innovative, sustainable solutions to water treatment, gas separation and energy devices
This book describes the tremendous progress that has been made in the development of gas separation membranes based both on inorganic and polymeric materials. Materials discussed include polymer inclusion membranes (PIMs), metal organic frameworks (MOFs), carbon based materials, zeolites, as well as other materials, and mixed matrix membranes (MMMs) in which the above novel materials are incorporated. This broad survey of gas membranes covers material, theory, modeling, preparation, characterization (for example, by AFM, IR, XRD, ESR, Positron annihilation spectroscopy), tailoring of membranes, membrane module and system design, and applications. The book is concluded with some perspectives about the future direction of the field.
Polymeric Gas Separation Membranes is an outstanding reference devoted to discussing the separation of gases by membranes. An international team of contributors examines the latest findings of membrane science and practical applications and explores the complete spectrum of relevant topics from fundamentals of gas sorption and diffusion in polymers to vapor separation from air. They also compare membrane processes with other separation technologies. This essential book will be valuable to all practitioners and students in membrane science and technology.
Nanocomposite Membranes for Water and Gas Separation presents an introduction to the application of nanocomposite membranes in both water and gas separation processes. This in-depth literature review and discussion focuses on state-of-the-art nanocomposite membranes, current challenges and future progress, including helpful guidelines for the further improvement of these materials for water and gas separation processes. Chapters address material development, synthesis protocols, and the numerical simulation of nanocomposite membranes, along with current challenges and future trends in the areas of water and gas separation. - Explains the development of nanocomposite membranes through bio-mimicking nanomaterials - Discusses the surface modification of nanomaterials to fabricate robust nanocomposite membranes - Outlines the environmental and operational challenges for the application of nanocomposite membranes
Following an introduction to the general concept of membrane separation in Chapter 1, preparation of polymeric membranes is discussed in Chapter 2. The book then describes in Chapter 3 membrane surface activation, which is a key step in ligand immobilizations. Chapter 4 focuses on ligand immobilization techniques and the organic chemistries behind them. Chapter 5 introduces the application of affinity membrane chromatography Finally, in Chapter 6, membranes used in biosensors and gas sensors, enzymatic membranes used as biosensor, and membrane biosensor for waste water treatment will be discussed. --
This ready reference on Membrane Technologies for Water Treatment, is an invaluable source detailing sustainable, emerging processes, to provide clean, energy saving and cost effective alternatives to conventional processes. The editors are internationally renowned leaders in the field, who have put together a first-class team of authors from academia and industry to present a highly approach to the subject. The book is an instrumental tool for Process Engineers, Chemical Engineers, Process Control Technicians, Water Chemists, Environmental Chemists, Materials Scientists and Patent Lawyers.
Synthetic Polymeric Membranes for Advanced Water Treatment, Gas Separation, and Energy Sustainability is a cutting-edge guide that focuses on advanced water treatment applications, covering oily wastewater treatment, desalination, removal of dyes and pigments, photodegradation of organic hazardous materials, heavy metal removal, removal and recovery of nutrients, and volatile organic compounds. Other sections examine the area of gas separation, including acidic gas removal, oxygen enrichment, gas and vapor separation, hydrogen separation, and gas sensing. Final sections cover applications for sustainable energy usage, including the use of synthetic polymer membranes in proton exchange membrane fuel cells (PEMFCs), and more. This is a highly valuable guide for researchers, scientists, and advanced students, working with polymer membranes and films, and across polymer science, polymer chemistry, materials science, chemical e - Explains the design, preparation and characterization of synthetic polymer-based membranes for advanced applications - Provides a clear picture of the state-of-the-art in the field, including novel fabrication approaches and the latest advances in physico-chemical characterizations - Supports the development and implementation of innovative, sustainable solutions to water treatment, gas separation and energy devices
Offers a comprehensive overview of membrane science and technology from a single source Written by a renowned author with more than 40 years’ experience in membrane science and technology, and polymer science Covers all major current applications of membrane technology in two definitive volumes Includes academic analyses, applications and practical problems for each existing membrane technology Includes novel applications such as membrane reactors, hybrid systems and optical resolution as well as membrane fuel cells
Covers a wide range of advanced materials and technologies for CO2 capture As a frontier research area, carbon capture has been a major driving force behind many materials technologies. This book highlights the current state-of-the-art in materials for carbon capture, providing a comprehensive understanding of separations ranging from solid sorbents to liquid sorbents and membranes. Filled with diverse and unconventional topics throughout, it seeks to inspire students, as well as experts, to go beyond the novel materials highlighted and develop new materials with enhanced separations properties. Edited by leading authorities in the field, Materials for Carbon Capture offers in-depth chapters covering: CO2 Capture and Separation of Metal-Organic Frameworks; Porous Carbon Materials: Designed Synthesis and CO2 Capture; Porous Aromatic Frameworks for Carbon Dioxide Capture; and Virtual Screening of Materials for Carbon Capture. Other chapters look at Ultrathin Membranes for Gas Separation; Polymeric Membranes; Carbon Membranes for CO2 Separation; and Composite Materials for Carbon Captures. The book finishes with sections on Poly(amidoamine) Dendrimers for Carbon Capture and Ionic Liquids for Chemisorption of CO2 and Ionic Liquid-Based Membranes. A comprehensive overview and survey of the present status of materials and technologies for carbon capture Covers materials synthesis, gas separations, membrane fabrication, and CO2 removal to highlight recent progress in the materials and chemistry aspects of carbon capture Allows the reader to better understand the challenges and opportunities in carbon capture Edited by leading experts working on materials and membranes for carbon separation and capture Materials for Carbon Capture is an excellent book for advanced students of chemistry, materials science, chemical and energy engineering, and early career scientists who are interested in carbon capture. It will also be of great benefit to researchers in academia, national labs, research institutes, and industry working in the field of gas separations and carbon capture.