Download Free Polymer Surfaces Book in PDF and EPUB Free Download. You can read online Polymer Surfaces and write the review.

In what is an extremely practical and applicable new work, experts provide concise explanations, with examples and illustrations, of the key techniques in this important field. In each case, after basic principles have been reviewed, applications of the experimental techniques are discussed and illustrated with specific examples. Scientists and engineers in research and development will benefit from an application-oriented book that helps them to find solutions to both fundamental and applied problems. They will know that the surfaces and interfaces of polymers play an important role in most of the application areas of polymers, from moulds, foils, and composites, to biomaterials and applications in micro- and nanotechnology.
Polymer Surfaces - From Physics to Technology is divided into four main sections. Firstly the origins and physical principles governing the properties of polymer surfaces are considered. Next the authors discuss methods of characterization, particularly spectroscopic, and those connected to surface energetics.
More than 99% of all visible matter in the universe occurs as highly ionized gas plasma with high energy content. Electrical low- and atmospheric-pressure plasmas are characterized by continuous source of moderate quantities of energy or enthalpy transferred predominantly as kinetic energy of electrons. Therefore, such energetically unbalanced plasmas have low gas temperature but produce sufficient energy for inelastic collisions with atoms and molecules in the gas phase, thus producing reactive species and photons, which are able to initiate all types of polymerizations or activate any surface of low reactive polymers. However, the broadly distributed energies in the plasma exceed partially the binding energies in polymers, thus initiating very often unselective reactions and polymer degradation. The intention of this book is to present new plasma processes and new plasma reactions of high selectivity and high yield. This book aims to bridge classical and plasma chemistry, particularly focusing on polymer chemistry in the bulk and on the surface under plasma exposure. The stability of surface functionalization and the qualitative and quantitative measurement of functional groups at polymer surface are featured prominently, and chemical pathways for suppressing the undesirable side effects of plasma exposure are proposed and illustrated with numerous examples. Special attention is paid to the smooth transition from inanimate polymer surfaces to modified bioactive polymer surfaces. A wide range of techniques, plasma types and applications are demonstrated.
Polymeric materials are used for a legion of applications in a wide array of technological areas, and their proper surface/interface characteristics are of cardinal importance for their applications. Therefore, the need to characterize polymer surfaces/interfaces and their suitable modification to impart desired characteristics is quite patent. This book chronicles the proceedings of the Symposium on Polymer Surfaces and Interfaces: Characterization, Modification and Application held as a part of the Society of Plastics Engineers Annual Technical Conference, Boston, May 7--11, 1995. The articles in this book address many aspects of polymer surfaces and interfaces. Topics covered include: various ways (chemical, photochemical, laser, flame, corona) to modify polymer surfaces; modification of contact lens surfaces; various ways to analyze/characterize polymer surfaces; metal/polymer interfaces; metal/polyimide adhesion; metal/self-assembled organic monolayer interfaces; polymer alignment layers for liquid crystals; alignment of liquid crystal surfaces; polyimide alignment layers; molecular re-orientation of polymer surfaces; plasma polymerized organic coatings; epoxy/fiber interphase; epoxy underfill materials for packaging integrated circuits; transport in polymers; polymer miscibility; and cell adhesion.
Adopting an integrated approach, this book covers experiments, theory, and emerging applications. In the first part surfaces are described that change from flat to either a random corrugated or to a well-structured structure, while the second part deals with those surface structures integrated in the coating surface where the structures change their shape or dimension when addressed by an external trigger. A variety of materials are addressed, including liquid crystal polymers, hydrogels, hard acrylates, and soft silicones. The whole is rounded off by a discussion of various applications, including surface controlled flows in microfluidic systems. Of interest to chemists and engineers, researchers in industry and academia, as well as those working in the paint industry and hydrodynamics.
FROM THE PREFACE The surface modification of polymeric materials has been the object of a large number of investigations, but little attention has been paid to making a polymer surface frictionless or slippery, and lubricating surfaces are practically unmentioned in any books so far published, probably because of the relatively minor importance of polymer friction in industrial applications. A lubricating polymer surface is important, especially in marine and biomedical technologies. For instance, biomaterials to be used for catheterization on the urinary, tracheal, and cardiovascular tracts, or for endoscopy, should have a surface with good handling characteristics when dry and which preferably becomes slippery upon contact with body liquids. Such a low-friction surface must enable easy insertion and removal of the device from a patient. It would further prevent mechanical injury to the mucous membranes and minimize discomfort to the patient. Earlier approaches to providing a low-friction surface were mostly simple applications involving lubricants such as lidocaine jelly, silicone oil, or non-permanent coating with low-friction materials such as polyethylene or fluoroplastics. However, these substances cannot maintain a high degree of slipperiness for the required duration of time, due to the fact that they leach or disperse into the surrounding body fluids. The aim of this book is to describe the principle of lubrication, to outline a variety of methods for attaining a lubricous surface, and to describe the characteristics and properties of such lubricous surfaces. The technology for surface modification of polymers by grafting will find other applications than for lubrication, such as for improvement of the interfacial adhesion in polymer composites.
This book presents the state of the art in surface wrinkling, including current and future potential applications in biomedicine, tissue engineering, drug delivery, microfluidic devices, and other promising areas. Their use as templates, flexible electronics, and supports with controlled wettability and/or adhesion for biorelated applications demonstrate how the unique characteristics of wrinkled interfaces play a distinguishing and remarkable role. The fabrication approaches employed to induce wrinkle formation and the potential to fine-tune the amplitude and period of the wrinkles, their functionality, and their final morphology are thoroughly described. An overview of the main applications in which these buckled interfaces have already been employed or may have an impact in the near future is included. Presents a detailed description of the physical phenomena and strategies occurring at polymer surfaces to produce wrinkled surface patterns; Examines the different methodologies to produce morphology-controlled wrinkled surface patterns by means of physical and chemical treatment methods; Provides clear information on current and potential applications in flexible electronics and biomaterials, which are leading the use of these materials.
More than 99% of all visible matter in the universe occurs as highly ionized gas plasma with high energy content. Electrical low- and atmospheric-pressure plasmas are characterized by continuous source of moderate quantities of energy or enthalpy transferred predominantly as kinetic energy of electrons. Therefore, such energetically unbalanced plasmas have low gas temperature but produce sufficient energy for inelastic collisions with atoms and molecules in the gas phase, thus producing reactive species and photons, which are able to initiate all types of polymerizations or activate any surface of low reactive polymers. However, the broadly distributed energies in the plasma exceed partially the binding energies in polymers, thus initiating very often unselective reactions and polymer degradation. The intention of this book is to present new plasma processes and new plasma reactions of high selectivity and high yield. This book aims to bridge classical and plasma chemistry, particularly focusing on polymer chemistry in the bulk and on the surface under plasma exposure. The stability of surface functionalization and the qualitative and quantitative measurement of functional groups at polymer surface are featured prominently, and chemical pathways for suppressing the undesirable side effects of plasma exposure are proposed and illustrated with numerous examples. Special attention is paid to the smooth transition from inanimate polymer surfaces to modified bioactive polymer surfaces. A wide range of techniques, plasma types and applications are demonstrated.
Describes the basic physics and materials science of conjugated polymers and their interfaces.
This book presents the analysis of up-to-date techniques used for the determination of acid-base properties in view of their applicability to examination of solid organic and inorganic surfaces. The studies have been carried out by the authors since 1993, showing experimental data on surface properties of more than 150 polymers, such as carbocatenary and heterochain polymers, copolymers and their blends, as well as different epoxy and rubber compositions used in adhesive joints. The adhesive ability of metal-polymer systems based on epoxy compositions, polyolefins, and rubbers was studied as a function of absolute difference in acid-base properties of adhesive and adherends, and the possibility to predict adhesive interaction on this basis was experimentally verified. The book shows the important role that acid-base interactions play in establishing interfacial adhesive-adherent contact and outlines practical recommendations regarding parameters of quantitative estimation of acid-base surface properties that implies the relationship with adhesive ability in polymer-metal systems. Creating polymeric materials with greater strength characteristics when in contact with metals is the most important problem when adhesive joints are designed. The authors obtained experimental data for thermodynamic and acid-base properties of about 200 organic and inorganic surfaces that find a wide practical application. These results may be used as a reference source to predict the adhesive ability of different coating systems. The possibility to predict adhesive interaction of adhesive with adherend, taking into account the absolute difference in their acidity and basicity, was verified experimentally.