Download Free Polymer Sorption Phenomena Book in PDF and EPUB Free Download. You can read online Polymer Sorption Phenomena and write the review.

This book contains contributions of the 7th Dresden Polymer Discussion held in Mei?en near Dresden from April 19 to 22, 1999. The conference was dedicated to the field 'Characterization of polymer sorption phenomena: From solution to the surface'. Research in the area of modification and characterization of surfaces and interfaces of solids has been booming in the last few years, due to its enormous importance and potential for the development of novel technologies in materials research and engineering. Therefore the 7th Dresden Polymer Discussion, held from April 19 to 22, 1999, was dedicated to the field 'Characterization of polymer sorption phenomena: from solution to the surface'. The publication of the proceedings in this book may contribute to further progress in this field.
Honolulu is a most beautiful place, suitable for all occa sions. Its choice as the meeting site for the first Joint Chemical Congress between the American Chemical Society and the Chemical Society of Japan was praised by scientists from both sides. During this Congress, the International Conference on Adhesion and Adsorption of Polymers was held at the Hyatt Regency Hotel between April 2 and 5, 1979. We had speakers from ten nations presenting over forty papers related to the subject matter. It was a memorable event. Unlike our two previous adhesion symposia held in 1971 and 1975, this was the first time in the same conference that we discussed both adhesion and adsorption of polymers simultaneously. These two important phenomena are not only inter-related, but also equally important in adhesive technology as well as biochemical processes. The papers presented to this Conference deal with these two phenomena from both fundamental and practical viewpoints. Furthermore, with the advance of new surface analytical techniques, the actual, microscopic happenings at the interfaces can be pin pointed. Thus, characterization of interface became one of the major focuses of this Conference. As a result, a broad coverage of the subject matter includes statistical thermodynamics, surface physics, surface analysis, fracture mechanics, viscoelasticity, failure analysis, surface modification, adsorption kinetics, bio polymer adsorption, etc. Thanks to the diligence of our contri butors, we are now able to publish the final papers in these two volumes.
In recent years, the importance of material science, or the understanding of the physical properties of food materials in the progress of food engineering, has become more recognized. Increasing numbers of basic and applied studies in this area appear in numerous journals and literature scattered around various disciplines. This 'Series in Food Material Science' is planned to survey, collect, organize, review and evaluate these studies. By doing so, it is hoped that this series will be instrumental in bringing about a better understanding of the physical properties of food materials, better communication among scientists, and rapid progress in food engineering, science and technology. This volume, Theory, Determination and Control of Physical Properties of Food Materia/s, Volume I of the 'Series in Food Material Science', contains basic principles, methods and instrumental methods for determination and application of the modifi cation of physical properties. In this book, noted investigators in the subjects have pooled their knowledge and made it available in a condensed form. Every chapter is selfcontained with most of them starting with a review or introduction, including the viewpoint of the author. These should offer a beginner a very general introduction to the subjects covered, make the scientists and technologists in the field aware of current progress and allow the specialists a chance to compare different viewpoints.
Describes and interrelates the following processes: cooperative alpha processes in a cold liquid, structural relaxation in the glass near Tg, the Johari-Goldstein beta process, the Williams-Götze process in a warm liquid, fast nonactivated cage rattling and boson peak, and ultraslow Fischer modes.
Surface Phenomena in the Structural and Mechanical Behaviour of Solid Polymers explores the role of various surface phenomena in the structural and mechanical behaviour of amorphous and semicrystalline polymers. This book: Discusses the development of the interfacial surface in the deformation of polymers Examines the healing of interfacial surfaces in polymers Inspects the structure and properties of polymers in thin films and surface layers Evaluates the mechanism of inelastic deformation in glassy amorphous polymers Investigates strain softening and the phenomena taking place upon deformation of polymers in active liquid media Covers the Rehbinder effect, or the adsorption reduction of the strength of solids Describes the properties of polymers in environmental or solvent crazing Analyses the interaction of the highly developed surface of crazed polymers with diverse low- and high-molecular mass components Addresses the instability and self-organisation of surface layers in polymers and diverse polymer systems Presents theoretical speculations concerning the structurally mechanical behaviour of ‘a rigid coating on a soft substratum’ (RCSS) systems Assesses the stress–strain properties of the thin surface layers of polymers and the nanometric coatings deposited on their surfaces Highlights the efficacy of the approaches developed for RCSS systems for the analysis and description of natural phenomena Details the applied aspects of surface phenomena in the structurally mechanical behaviour of polymers Thus, Surface Phenomena in the Structural and Mechanical Behaviour of Solid Polymers provides a useful framework for the development of new and innovative polymer-based materials.
Polymers are substances containing a large number of structural units joined by the same type of linkage. These substances often form into a chain-like structure. Starch, cellulose, and rubber all possess polymeric properties. Today, the polymer industry has grown to be larger than the aluminium, copper and steel industries combined. Polymers already have a range of applications that far exceeds that of any other class of material available to man. Current applications extend from adhesives, coatings, foams, and packaging materials to textile and industrial fibres, elastomers, and structural plastics. Polymers are also used for most composites, electronic devices, biomedical devices, optical devices, and precursors for many newly developed high-tech ceramics. This book presents leading-edge research in this rapidly-changing and evolving field.
Demand for better reliability from drug delivery systems has caused designers and researchers to move away from trial-and-error approaches and toward model-based methods of product development. Developing such models requires cross-disciplinary physical, mathematical, and physiological knowledge. Combining these areas under a single cover, Under
ACOUSTIC AND VIBRATIONAL ENHANCED OIL RECOVERY Oil and gas is still a major energy source all over the world, and techniques like these, which are more environmentally friendly and inexpensive than many previous development and production technologies, are important for making fossil fuels more sustainable and less hazardous to the environment. Based on research they did in the 1970s in Russia and the United States, the authors discovered that oil rate production increased noticeably several days after the occurrence of an earthquake when the epicenter of the earthquake was located in the vicinity of the oil producing field. The increase in oil flow remained higher for a considerable period of time, and it led to a decade-long study both in the Russia and the US, which gradually focused on the use of acoustic/vibrational energy for enhanced oil recovery after reservoirs waterflooded. In the 1980s, they noticed in soil remediation studies that sonic energy applied to soil increases the rate of hydrocarbon removal and decreases the percentage of residual hydrocarbons. In the past several decades, the use of various seismic vibration techniques have been used in various countries and have resulted in incremental oil production. This outstanding new volume validates results of vibro-stimulation tests for enhanced oil recovery, using powerful surface-based vibro-seismic sources. It proves that the rate of displacement of oil by water increases and the percentage of nonrecoverable residual oil decreases if vibro-energy is applied to the porous medium containing oil. Audience: Petroleum Engineers, Chemical Engineers, Earthquake and Energy engineers, Environmental Engineers, Geotechnical Engineers, Mining and Geological Engineers, Sustainability Engineers, Physicists, Chemists, Geologists, and other professionals working in this field
The articles collected in this publication have previously been published in eight special issues of the Journal of Biomaterials Science, Polymer Edition, in honour of Dr. Allan S. Hoffman, who is known as a pioneer, a leader and a mentor in the field of biomaterials. The papers from renowned scientists from all parts of the world, representing the
"Presents the latest knowledge on a wide range of topics in polymer science, including the dynamics, preparation, application, and physiochemical properties of polymer solutions and colloids; the adsorption characteristics at polymer surfaces; and the adhesion properties (including acid-base) of polymer surfaces."