Download Free Polymer Science Overview Book in PDF and EPUB Free Download. You can read online Polymer Science Overview and write the review.

An Updated Edition of the Classic Text Polymers constitute the basis for the plastics, rubber, adhesives, fiber, and coating industries. The Fourth Edition of Introduction to Physical Polymer Science acknowledges the industrial success of polymers and the advancements made in the field while continuing to deliver the comprehensive introduction to polymer science that made its predecessors classic texts. The Fourth Edition continues its coverage of amorphous and crystalline materials, glass transitions, rubber elasticity, and mechanical behavior, and offers updated discussions of polymer blends, composites, and interfaces, as well as such basics as molecular weight determination. Thus, interrelationships among molecular structure, morphology, and mechanical behavior of polymers continue to provide much of the value of the book. Newly introduced topics include: Nanocomposites, including carbon nanotubes and exfoliated montmorillonite clays The structure, motions, and functions of DNA and proteins, as well as the interfaces of polymeric biomaterials with living organisms The glass transition behavior of nano-thin plastic films In addition, new sections have been included on fire retardancy, friction and wear, optical tweezers, and more. Introduction to Physical Polymer Science, Fourth Edition provides both an essential introduction to the field as well as an entry point to the latest research and developments in polymer science and engineering, making it an indispensable text for chemistry, chemical engineering, materials science and engineering, and polymer science and engineering students and professionals.
Hans-Georg Elias An Introduction to Polymer Science Polymer science at its best! A completely new approach reflecting the interdisciplinary nature of polymer science! Modern polymer science is firmly rooted not only in the chemistry of macromolecules but also in their pyhsical chemistry and physics. Furthermore, this modern insight provides the reader with information on the three most important uses of synthetic polymers: elastomers, fibers and plastics. Biopolymers are also considered. This book fulfills the need for a volume which introduces polymer science in a straightforward, rigorous, and practical way. It is divided into four parts that cover the chemistry, physical chemistry, physics and technology of polymers. Whenever possible, physical equations are not just presented but are derived step by step from first principles enabling the newcomer to ease smoothy into the subject. The reference to industrial aspects makes this book an indispensable support for both students and professionals.
This high school textbook introduces polymer science basics, properties, and uses. It starts with a broad overview of synthetic and natural polymers and then covers synthesis and preparation, processing methods, and demonstrations and experiments. The history of polymers is discussed alongside the s
About ten years after the publication of the Second Edition (1973), it became apparent that it was time for an up-date of this book. This was especially true in this case, since the subject matter has traditionally dealt mainly with the structure, properties, and technology of the various elastomers used in industry, and these are bound to undergo significant changes over the period of a decade. In revising the contents of this volume, it was thought best to keep the orig inal format. Hence the first five chapters discuss the same general subject matter as before. The chapters dealing with natural rubber and the synthetic elastomers are up-dated, and an entirely new chapter has been added on the thermoplastic elastomers, which have, of course, grown tremendously in importance. Another innovation is the addition of a new chapter, "Miscellaneous Elastomers," to take care of "old" elastomers, e.g., polysulfides, which have decreased some what in importance, as well as to introduce some of the newly-developed syn thetic rubbers which have not yet reached high production levels. The editor wishes to express his sincere appreciation to all the contributors, without whose close cooperation this task would have been impossible. He would especially like to acknowledge the invaluable assistance of Dr. Howard Stephens in the planning of this book, and for his suggestion of suitable authors.
This book provides a unified mechanics and materials perspective on polymers: both the mathematics of viscoelasticity theory as well as the physical mechanisms behind polymer deformation processes. Introductory material on fundamental mechanics is included to provide a continuous baseline for readers from all disciplines. Introductory material on the chemical and molecular basis of polymers is also included, which is essential to the understanding of the thermomechanical response. This self-contained text covers the viscoelastic characterization of polymers including constitutive modeling, experimental methods, thermal response, and stress and failure analysis. Example problems are provided within the text as well as at the end of each chapter. New to this edition: · One new chapter on the use of nano-material inclusions for structural polymer applications and applications such as fiber-reinforced polymers and adhesively bonded structures · Brings up-to-date polymer production and sales data and equipment and procedures for evaluating polymer characterization and classification · The work serves as a comprehensive reference for advanced seniors seeking graduate level courses, first and second year graduate students, and practicing engineers
An introduction to polymers and how they dominate our world Polymer science is concerned with the structure, synthesis, physical properties, and utility of polymers. Polymers are macromolecular building blocks used to construct natural and man-made materials. Polymers from the Inside Out: An Introduction to Macromolecules provides an all-encompassing introduction to polymers and how they affect the world. Offering a clear explanation of the unique properties exhibited by polymers, this book explores the detailed microstructures of polymers and their internal responses to stress and the environment. Polymers from the Inside Out appeals to a wide range of disciplines, including polymer, organic, materials, and physical chemistry, as well as textile science and engineering. Chapters include: * Physical properties unique to polymeric materials * Step-growth and chain-growth polymerizations * Microstructures of polymers * Conformational characteristics of polymers developed with the rotational isomeric states model * Solution and bulk properties of polymers * Biopolymers * Discussion questions appropriate for first- and second-semester polymer students at the end of every chapter Polymers from the Inside Out is designed to facilitate either a one-semester or two-semester course on polymers and is an essential resource for the practicing scientist.
With such a wide diversity of properties and applications, is it any wonder that industry and academia have such a fascination with polymers? A solid introduction to such an enormous and important field is critical to the modern polymer scientist-to-be, but most of the available books do not stress practical problem solving or include recent advances. Serving as the polymer book for the new millennium, Introduction to Polymer Science and Chemistry: A Problem Solving Approach unites the fundamentals of polymer science and polymer chemistry in a seamless presentation. Emphasizing polymerization kinetics, the author uses a unique question-and-answer approach when developing theory or introducing new concepts. The first four chapters introduce polymer science, focusing on physical and molecular properties, solution behavior, and molecular weights. The remainder of the book explores polymer chemistry, devoting individual, self-contained chapters to the main types of polymerization reactions: condensation; free radical; ionic; coordination; and ring-opening. It introduces recent advances such as supramolecular polymerization, hyperbranching, photoemulsion polymerization, the grafting-from polymerization process, polymer brushes, living/controlled radical polymerization, and immobilized metallocene catalysts. With numerical problems accompanying the discussion at every step along with numerous end-of-chapter exercises, Introduction to Chemical Polymer Science: A Problem Solving Approach is an ideal introductory text and self-study vehicle for mastering the principles and methodologies of modern polymer science and chemistry.
Polymer Science and Nanotechnology: Fundamentals and Applications brings together the latest advances in polymer science and nanoscience. Sections explain the fundamentals of polymer science, including key aspects and methods in terms of molecular structure, synthesis, characterization, microstructure, phase structure and processing and properties before discussing the materials of particular interest and utility for novel applications, such as hydrogels, natural polymers, smart polymers and polymeric biomaterials. The second part of the book examines essential techniques in nanotechnology, with an emphasis on the utilization of advanced polymeric materials in the context of nanoscience. Throughout the book, chapters are prepared so that materials and products can be geared towards specific applications. Two chapters cover, in detail, major application areas, including fuel and solar cells, tissue engineering, drug and gene delivery, membranes, water treatment and oil recovery. - Presents the latest applications of polymers and polymeric nanomaterials, across energy, biomedical, pharmaceutical, and environmental fields - Contains detailed coverage of polymer nanocomposites, polymer nanoparticles, and hybrid polymer-metallic nanoparticles - Supports an interdisciplinary approach, enabling readers from different disciplines to understand polymer science and nanotechnology and the interface between them
This is an introductory textbook on polymer science aimed at lecturers/professors, undergraduate and graduate students of polymer science and technology courses as well as engineering (materials, chemical, civil, food, etc.), chemistry, and physics. It is also aimed at engineers and technologists. Each chapter is written starting from simple concepts and progressively getting more complex towards its end, to help the reader decide how deep to go into each topic. Each chapter also presents the solution of many proposed problems, guiding the reader to solve numerically the everyday problems polymer technologists face, by applying theoretical concepts. Additionally, at every chapter's end there is a list of problems for the reader to check his/her understanding of the topics. The book contains a list of more than 10 experiments to perform in the laboratory, linked to some of the concepts discussed in the book. It also serves as a long-term reference with many figures, diagrams, tables, chemical equations containing frequently needed information. It contains as well an appendix with a long list of chemical structures of the main commercially available polymers.