Download Free Polymer Mixing Technology Book in PDF and EPUB Free Download. You can read online Polymer Mixing Technology and write the review.

Addressing the two major unit operations-mixing and extrusion-fundamental toprocessing elastomers and plastic materials, this reference summarizes design equationsthat can be employed effectively in scaling up product performance parameters, andcontains a thorough survey of rheological principles. In addition, the book provides awealth of practical information, relating molecular and compositional properties ofpolymers to processing characteristics and end-use properties so that engineers can selectpolymers suitable for specific equipment as well as products.Polymer Mixing and Extrusion Technology examines viscometric techniquesand demonstrates their importance to product quality assurance ... reviews design-relatedliterature/correlations and calculation procedures for mixing and extrusion ... definesneeds and precision standards for setting up a polymer processing laboratory so thatproduct quality control can be implemented in physical testing and processing research.. . plus more.Illustrated with over 200 diagrams, tables, and photographs that facilitate readers'understanding of the processes, Polymer Mixing and Extrusion Technology isan authoritative source for plastics, polymer, and chemical engineers, manufacturers ofplastics processing equipment, and advanced undergraduate and graduate students in thesedisciplines.
Addressing the two major unit operations-mixing and extrusion-fundamental toprocessing elastomers and plastic materials, this reference summarizes design equationsthat can be employed effectively in scaling up product performance parameters, andcontains a thorough survey of rheological principles. In addition, the book provides awealth of practical information, relating molecular and compositional properties ofpolymers to processing characteristics and end-use properties so that engineers can selectpolymers suitable for specific equipment as well as products.Polymer Mixing and Extrusion Technology examines viscometric techniquesand demonstrates their importance to product quality assurance ... reviews design-relatedliterature/correlations and calculation procedures for mixing and extrusion ... definesneeds and precision standards for setting up a polymer processing laboratory so thatproduct quality control can be implemented in physical testing and processing research.. . plus more.Illustrated with over 200 diagrams, tables, and photographs that facilitate readers'understanding of the processes, Polymer Mixing and Extrusion Technology isan authoritative source for plastics, polymer, and chemical engineers, manufacturers ofplastics processing equipment, and advanced undergraduate and graduate students in thesedisciplines.
Finally available again in its second edition, this classic covers everything from the basic principles to the various practical applications of state-of-the-art mixing and compounding. Part I: Mechanisms and Theory Basic Concepts - Mixing of Miscible Fluids - Mixing of Immiscible Fluids - Dispersive Mixing of Solid Additives - Distributive Mixing - Distribution Functions and Measures of Mixing Part II: Mixing Equipment - Modeling, Simulation, Visualization Batch Equipment Simulation - Batch Equipment Visualization - Continuous Equipment Simulation - Dispersive Mixing Devices in Single Screw - Twin Rotor Mixers - Co-Kneader - Visualization - Scale-up of Mixing Equipment - Scale-down of Mixing Equipment Part III Material Consideration, Properties and Characterization Solid additives (inorganic) - Solid additives (organic) - Compatibilizers (mechanisms, theory) - Material Consideration for Mixing at Nanoscale - Effect of Mixing on Properties of Compounds - Effect of Mixing on Rubber Properties Part IV Mixing Practices Internal Mixers - Single Screw Extruders - Twin Screw Extruders - Intermeshing Twin Screw Extruders - Reciprocating Screws - Reactive Compounding - Farrel Continuous Mixer
Polymer Blends, Volume 1 highlights the importance of polymer blends as a major new branch of macromolecular science. Topics range from polymer-polymer compatibility and the statistical thermodynamics of polymer blends to the phase separation behavior of polymer-polymer mixtures, transport phenomena in polymer blends, and mechanical properties of multiphase polymer blends. The optical behavior, solid state transition behavior, and rheology of polymer blends are also discussed. This book is organized into 10 chapters and begins with an overview of polymer blends, with emphasis on terminology and the effect of molecular weight on the thermodynamics of polymer blends as well as phase equilibria and transitions. The discussion then turns to the miscibility of homopolymers and copolymers, in bulk and in solution, from the experimental and theoretical viewpoints. The chapters that follow explore the statistical thermodynamics of polymer blends, paying particular attention to the Flory and lattice fluid theories, along with the phase relationship in polymer mixtures. The interfacial energy, structure, and adhesion between polymers in relation to the properties of polymer blends are considered. The final chapter examines the phenomena of low molecular weight penetrant transport. Currently accepted models for unsteady-state and steady-state permeation of polymeric materials are presented. A discussion of unsteady-state absorption and desorption behavior observed in a variety of polymer blends complements the treatment of permeation behavior. This book is intended to provide academic and industrial research scientists and technologists with a broad background in current principles and practice concerning mixed polymer systems.
Fundamental concepts coupled with practical, step-by-step guidance With its emphasis on core principles, this text equips readers with the skills and knowledge to design the many processes needed to safely and successfully manufacture thermoplastic parts. The first half of the text sets forth the general theory and concepts underlying polymer processing, such as the viscoelastic response of polymeric fluids and diffusion and mass transfer. Next, the text explores specific practical aspects of polymer processing, including mixing, extrusion dies, and post-die processing. By addressing a broad range of design issues and methods, the authors demonstrate how to solve most common processing problems. This Second Edition of the highly acclaimed Polymer Processing has been thoroughly updated to reflect current polymer processing issues and practices. New areas of coverage include: Micro-injection molding to produce objects weighing a fraction of a gram, such as miniature gears and biomedical devices New chapter dedicated to the recycling of thermoplastics and the processing of renewable polymers Life-cycle assessment, a systematic method for determining whether recycling is appropriate and which form of recycling is optimal Rheology of polymers containing fibers Chapters feature problem sets, enabling readers to assess and reinforce their knowledge as they progress through the text. There are also special design problems throughout the text that reflect real-world polymer processing issues. A companion website features numerical subroutines as well as guidance for using MATLAB®, IMSL®, and Excel to solve the sample problems from the text. By providing both underlying theory and practical step-by-step guidance, Polymer Processing is recommended for students in chemical, mechanical, materials, and polymer engineering.
In recent years, there has been a veritable explosion of research and development in consumer-oriented fields that utilize polymeric materials which absorb large amounts of water. These fields encompass the preparation, characterization and commercialization of separation systems, pharmaceutical and personal care products such as infant diapers, feminine products, incontinence products and many other related areas. The polymeric materials utilized in these applications are known as absorbent or superabsorbent materials because of their ability to swell rapidly and to retain large volumes of water, urine and other biological fluids.The aim of this book is to introduce the fundamentals of polymer structure and swelling as related to polymers used for these superabsorbent materials. In the field of absorbence, particular attention is given to crosslinked structures which swell to more than fifty times their initial weight in water or electrolytic solutions. The book also provides descriptions of novel applications of superabsorbent materials as well as a detailed analysis of water transport in crosslinked polymers.Absorbent Polymer Technology should be of interest to chemists, polymer scientists, chemical engineers, and industrial scientists working with swellable polymeric systems in personal care, pharmaceutical, agricultural waste treatment and separation industries.
Sustainable Polylactide-Based Blends provides a critical overview of the state-of-the-art in polylactide (PLA)-based blends, addressing the latest advances, innovative processing techniques and fundamental issues that persist in the field. Sections cover the fundamentals of sustainable polymeric materials, polylactide and polymer blends, current and upcoming processing technologies, structure and morphology characterization techniques for PLA and PLA-based blends, and the processing, morphology development, and properties of polylactide-based blends. Final chapters focus on current and future applications, market potential, key challenges and future outlooks. Throughout the book, theoretical modeling of immiscible polymer blends helps to establish structure-property relationships in various PLA-based polymer blends. With in-depth coverage of fundamentals and processing techniques, the book aims to support the selection of each processing method, along with an understanding of surface chemistry to achieve improved compatibility between phases. - Explains fundamental aspects of polylactide-based blends, including characterization methods and property measurement techniques - Offers comprehensive and detailed coverage of processing, morphology and properties, all organized by blend material - Analyzes novel methods and addresses challenges associated with PLA-based blends, with a focus on applications and market potential
A complete and timely overview of the topic, this volume imparts knowledge of fundamental principles and their applications for academicians, scientists and researchers, while informing engineers, industrialists and entrepreneurs of the current state of the technology and its utilization. Each article is uniformly structured for easy navigation, containing the latest research & development and its basic principles and applications, examples of case studies, laboratory and pilot plant experiments, as well as due reference to the published and patented literature.
Focusing on recent developments in techniques and materials, this volume examines the processing techniques critical to the quality performance of polymer products used in a wide range of industries. It discusses thermosets, thermoplastics, elastomers, foams, and nanocomposites. It also covers multiphase systems from macro to nano scales and reviews developments in established techniques. Leading experts in each area look at extrusion technologies, injection molding, and blow molding, in addition to recently developed processing technologies, such as those using supercritical fluids, micromolding, and reactive processing. The book also touches on post-processing techniques.