Download Free Polymer Induced Tumor Immunotherapy By In Situ Activation Of Antigen Presenting Cells Book in PDF and EPUB Free Download. You can read online Polymer Induced Tumor Immunotherapy By In Situ Activation Of Antigen Presenting Cells and write the review.

Cancer is one of the most common diseases with a global incidence of 20 million people, responsible for 10 million deaths in 2020. The tendency is increasing. Normally, our immune system recognizes mutated cells and eliminates them. Cancer cells, however, are able to develop escape strategies that interfere with their elimination. Cancer immunotherapies aim at reinstalling the inherent capacity of immune cells to recognize and eliminate tumor cells. To induce a tumor-specific immune response able to eliminate cancer cells in the presence of an immunosuppressive tumor microenvironment, we established an immune stimulating and antigen-presenting nanoparticle (NP) platform. The NPs are decorated with ovalbumin (OVA) as model antigen and 1-(4-(aminomethyl)- benzyl)-2-butyl-1H-imidazo[4,5-c]quinolin-4- amine (IMDQ) as an immune stimulatory TLR7/8 agonist. They are characterized by pH sensitivity, well toleration and safety for intravenous injection. To analyze the potential of our NPs in vivo, we inoculated B16-F10 or MC38 tumor cells either expressing membranous or cytosolic bound OVA or without expressing the antigen as control subcutaneously in the flank of C57BL/6 wild-type mice. When the tumor was pulpable with a size of about 0,25 mm3 mice were vaccinated intravenously three times (on day 3, 5 and 7) with our nanogel to develop an immune response against our model antigen OVA in a therapeutic setting. Every two days we measured the tumor volume and once a week we took blood from the mice to determine the antibody titer. After approximately two weeks we sacrificed the mice and analyzed the immune responses concerning cytokines, T cell and B cell production. Furthermore, we analyzed the sera, splenocytes and lymphocytes from the mice via flow cytometry. We could show that our NP therapy was able to reduce the tumor growth in two different tumor models. The particles provided an antigen specific tumor immunity by inducing a Th1-mediated immune response and a high production of CD8+ T cells. These results were also confirmed by single cell RNA analysis. Further evaluation and experiments are needed to decipher the differences in the T cell response and the role of the involvement of B cells in combination with T cells in the different models.
This volume explores the various methods used to study tertiary lymphoid structures (TLS) in pathological situations. Pre-clinical models are also discussed in detail to show how TLS structure, development, and maintenance can be targeted and studied in vivo. The chapters in this book cover topics such as humans and mice; strategies to quantify TLS in order to use it in stained tissue sections; classifying a gene signature form fixed and paraffin-embedded tissues; and development of murine inflammatory models to help look at TLS in the context of infection or malignancy. Written in the highly successful Methods in Molecular Biology series format, chapters include introductions to their respective topics, lists of the necessary materials and reagents, step-by-step, readily reproducible laboratory protocols, and tips on troubleshooting and avoiding known pitfalls. Authoritative and thorough, Tertiary Lymphoid Structures: Methods and Protocols is a valuable resource that increases the reader’s knowledge on immune functions and how they will pave the way to future therapeutic applications.
This report presents the latest national survival and prevalence statistics for cancers in Australia from 1982 to 2010. Survival from cancer is a key indicator of cancer prognosis, control and treatment. It refers to the probability of being alive for a given amount of time after diagnosis and reflects the severity of a cancer diagnosis.
In the past few decades there has been incredible growth in "bionano"-related research, which has been accompanied by numerous publications in this field. Although various compilations address topics related to deoxyribonucleic acid (DNA) and protein, there are few books that focus on determining the structure of ribonucleic acid (RNA) and using RNA as building blocks to construct nanoarchitectures for biomedical and healthcare applications. RNA Nanotechnology is a comprehensive volume that details both the traditional approaches and the latest developments in the field of RNA-related technology. This book targets a wide audience: a broad introduction provides a solid academic background for students, researchers, and scientists who are unfamiliar with the subject, while the in-depth descriptions and discussions are useful for advanced professionals. The book opens with reviews on the basic aspects of RNA biology, computational approaches for predicting RNA structures, and traditional and emerging experimental approaches for probing RNA structures. This section is followed by explorations of the latest research and discoveries in RNA nanotechnology, including the design and construction of RNA-based nanostructures. The final segment of the book includes descriptions and discussions of the potential biological and therapeutic applications of small RNA molecules, such as small/short interfering RNAs (siRNAs), microRNAs (miRNAs), RNA aptamers, and ribozymes.
This book is intended to serve as an authoritative reference source for a broad audience involved in the research, teaching, learning, and practice of nanotechnology in immunotherapy. The combination of nanotechnology and immunotherapy is recognized as a promising treatment modality. In particular, the use of nanoparticles in immunotherapy has attracted increased attention for their unique efficacy and specificity in cancer treatment. A wide variety of nanoparticles, such as polymeric and liposomal nanosystems, carbon nanotubes, and gold nanoparticles have provided important nanoplatforms for immunotherapeutic approaches. They have been shown to improve delivery and efficacy of immunotherapeutic agents such as vaccines or adjuvants. Nanoparticle-mediated thermal therapy has demonstrated the effectiveness for precise tumor cell ablation, radio-sensitization of hypoxic regions, enhancement of drug delivery, activation of thermosensitive agents, and enhancement of the immune system. Plasmonic nanoparticles are a special type of metallic nanoparticles that has received great interest due to their enhanced optical and electromagnetic properties and their superior capacity to convert photon energy into heat for selective photothermal therapy at the nanoscale level. Nanoparticle sizes can also be controlled such that they accumulate preferentially in tumors due to the enhanced permeability and retention effect of tumor vasculature. Various nanosystems such as gold nanoparticles have also been shown to stimulate the immune system. Immunotherapies could thus synergistically benefit from the combination with targeted nanoparticle-mediated photothermal therapies, especially when hyperthermia around immune-checkpoint inhibitors in the tumor bed is combined with precise thermal ablation of cancer cells. Of great importance is the possibility that such an approach can induce long-term immunological memory that can provide protection against tumor recurrence long after treatment of the initial tumors, like an ‘anticancer vaccine’. Nanoparticle-mediated immunotherapy could lead to an entirely new treatment paradigm that challenges traditional surgical resection approaches for many cancers and metastases.
Therapeutic cancer vaccines represent a type of active cancer immunotherapy. Clinicians, scientists, and researchers working on cancer treatment require evidence-based and up-to-date resources relating to therapeutic cancer vaccines. Vaccines for Cancer Immunotherapy provides a reference for cancer treatment for clinicians and presents a well-organized resource for determining high-potential research areas. The book considers that this promising modality can be made more feasible as a treatment for cancer. Chapters cover cancer immunology, general approaches to cancer immunotherapy, vaccines, tumor antigens, the strategy of allogeneic and autologous cancer vaccines, personalized vaccines, whole-tumor antigen vaccines, protein and peptide vaccines, dendritic cell vaccines, genetic vaccines, candidate cancers for vaccination, obstacles to developing therapeutic cancer vaccines, combination therapy, future perspectives and concluding remarks on therapeutic cancer vaccines. - Introduces the feasible immunotherapeutic vaccines for patients with different types of cancer - Presents the status of past and current vaccines for cancer treatment - Considers advantages and disadvantages of different therapeutic cancer vaccines - Looks at the combination of vaccines and other modalities, including immunotherapeutic and conventional methods - Analyzes obstacles to development of therapeutic cancer vaccines - Gives a view on future perspectives in the application of therapeutic cancer vaccines
This comprehensive, authoritative treatise covers all aspects of mucosal vaccines including their development, mechanisms of action, molecular/cellular aspects, and practical applications. The contributing authors and editors of this one-of-a-kind book are very well known in their respective fields. Mucosal Vaccines is organized in a unique format in which basic, clinical, and practical aspects of the mucosal immune system for vaccine development are described and discussed. This project is endorsed by the Society for Mucosal Immunology. - Provides the latest views on mucosal vaccines - Applies basic principles to the development of new vaccines - Links basic, clinical, and practical aspects of mucosal vaccines to different infectious diseases - Unique and user-friendly organization
Interest in biodegradable and absorbable polymers is growing rapidly in large part because of their biomedical implant and drug delivery applications. This text illustrates creative approaches to custom designing unique, fiber-forming materials for equally unique applications. It includes an example of the development and application of a new absor
The second edition of this encyclopedia presents over 400 biologically important signaling molecules and the content is built on the core concepts of their functions along with early findings written by some of the world’s foremost experts. The molecules are described by recognized leaders in each molecule. The interactions of these single molecules in signal transduction networks will also be explored. This encyclopedia marks a new era in overview of current cellular signaling molecules for the specialist and the interested non-specialist alike. Currently, there are more than 30,000 genes in human genome. However, not all the proteins encoded by these genes work equally in order to maintain homeostasis. Understanding the important signaling molecules as completely as possible will significantly improve our research-based teaching and scientific capabilities.
This Brief focuses on the cancer therapy available till date, from conventional drug delivery to nanomedicine in clinical trial. In addition, it reports on future generation based nanotherapeutics and cancer theranostic agent for effective therapeutic diagnosis and treatment. Breast cancer was chosen as the model system in this review. The authors give emphasis to multiple drug resistance (MDR) and its mechanism and how to overcome it using the nanoparticle approach.