Download Free Polymer Composites And Nanocomposites For X Rays Shielding Book in PDF and EPUB Free Download. You can read online Polymer Composites And Nanocomposites For X Rays Shielding and write the review.

This book focuses on the processing, materials design, characterisation, and properties of polymer composites and nanocomposites for use as electromagnetic radiation shielding materials and to enhance radiation shielding capacity in order to meet the safety requirements for use in medical X-ray imaging facilities. It presents an in-depth analysis of materials synthesis methods such as melt-mixing, ion-implantation, solution casting and electrospinning. In addition, it measures the X-ray attenuation behaviour of fabricated composites and nanocomposites in four major types of X-ray equipment, namely general radiography, mammography, X-ray absorption spectroscopy and X-ray fluorescence spectroscopy units. Given its scope, the book will benefit researchers, engineers, scientists and practitioners in the fields of medical imaging, diagnostic radiology and radiation therapy.
Polymer Nanocomposite Films and Coatings: Processes, Fundamental Properties and Applications presents a comprehensive review on the fundamental chemistry, physics, biology and engineering aspects of polymer nanocomposite films and coatings.The content of the book covers design configuration, synthesis and processing methods, structure, fundamental properties, and a wide range of applications in diverse research fields. Various unresolved issues and new technical challenges regarding regulatory affairs, safety considerations and environmental and health impact are also discussed in detail.The book will be a valuable reference resource for scientists, engineers, and postgraduate students, working in the field of polymer composites and nanocomposites helping them to find solutions to both fundamental and applied problems associated with this important research field. Presents recent research developments in the synthesis, processing, functionalization, and properties of polymer nanocomposite films and coatings Covers applications in electronics and optoelectronic devices, sensors and actuators, solar energy, food packaging, anticorrosion, anti-wear, antifouling, electromagnetic interference shielding, dielectric, aerospace, and textile industries as well as in biomedical fields for antibacterial, antifungal, and drug delivery applications Includes comprehensive coverage with a global, internationally recognized author-base
With its focus on the characterization of nanocomposites using such techniques as x-ray diffraction and spectrometry, light and electron microscopy, thermogravimetric analysis, as well as nuclear magnetic resonance and mass spectroscopy, this book helps to correctly interpret the recorded data. Each chapter introduces a particular characterization method, along with its foundations, and makes the user aware of its benefits, but also of its drawbacks. As a result, the reader will be able to reliably predict the microstructure of the synthesized polymer nanocomposite and its thermal and mechanical properties, and so assess its suitability for a particular application. Belongs on the shelf of every product engineer.
Polymer Nanocomposites for Electromagnetic Interference Shielding is the first reference to cover the different carbon nanomaterial-based polymer systems for EMI shielding, enabling the development of these novel conductive polymers and their application in a range of EMI shielding contexts, such as aerospace applications. The book explores the use of polymer composites with carbon nanomaterials (such as single walled carbon nanotubes, multiwalled carbon nanotubes, carbon nanofibers, and graphene) providing the required level of conductivity. In comparison to conventional metal-based EMI shielding materials, carbon-based conductive polymer composites are light-weight, corrosion-resistant and flexible, with good processability. However, the high proportion of carbon filler used in the most widely used polymer composites leads to a deterioration of the mechanical properties of polymer. The small diameter, high aspect ratio, high conductivity, and mechanical strength of CNTs make them an excellent option for creating conductive composites for high performance EMI shielding materials. Different polymers have different properties that can be used to achieve conductive composites with a variety of properties. Provides in-depth knowledge of polymer systems using carbon nanostructures Explores the use of different carbon nanomaterials (CNT, Graphene, hybrid carbon nanostructures) in conjunction with a range of polymers (polyolefins, polyurethane, polyester, etc.) Offers an applications focus, investigating uses in sectors such as aerospace and the electronics and computer industries
This highlights ongoing research efforts on different aspects of polymer nanocomposites and explores their potentials to exhibit multi-functional properties. In this context, it addresses both fundamental and advanced concepts, while delineating the parameters and mechanisms responsible for these potentials. Aspects considered include embrittlement/toughness; wear/scratch behaviour; thermal stability and flame retardancy; barrier, electrical and thermal conductivity; and optical and magnetic properties. Further, the book was written as a coherent unit rather than a collection of chapters on different topics. As such, the results, analyses and discussions presented herein provide a guide for the development of a new class of multi-functional nanocomposites. Offering an invaluable resource for materials researchers and postgraduate students in the polymer composites field, they will also greatly benefit materials
Nanoparticles are revolutionizing and helping to improve every sector including engineering, medicine, food safety, transportation, energy, and environmental science. To ensure industries take full advantage of the opportunities nanoparticles provide, further study on the advancements and challenges within the field is required. Diversity and Applications of New Age Nanoparticles considers new developments and applications of nanoparticles and addresses the development of new materials, synthesis routes, and emerging research in this field. Covering key topics such as antibiotics, thin films, battery technologies, and composites, this premier reference source is ideal for industry professionals, computer scientists, policymakers, engineers, pharmacists, medical professionals, researchers, scholars, practitioners, instructors, and students.
Conducting Polymer-Based Nanocomposites: Fundamentals and Applications delivers an up-to-date overview on cutting-edge advancements in the field of nanocomposites derived from conjugated polymeric matrices. Design of conducting polymers and resultant nanocomposites has instigated significant addition in the field of modern nanoscience and technology. Recently, conducting polymer-based nanocomposites have attracted considerable academic and industrial research interest. The conductivity and physical properties of conjugated polymers have shown dramatic improvement with nanofiller addition. Appropriate fabrication strategies and the choice of a nanoreinforcement, along with a conducting matrix, may lead to enhanced physicochemical features and material performance. Substantial electrical conductivity, optical features, thermal stability, thermal conductivity, mechanical strength, and other physical properties of the conducting polymer-based nanocomposites have led to high-performance materials and high-tech devices and applications. This book begins with a widespread impression of state-of-the-art knowledge in indispensable features and processing of conducting polymer-based nanocomposites. It then discusses essential categories of conducting polymer-based nanocomposites such as polyaniline, polypyrrole, polythiophene, and derived nanomaterials. Subsequent sections of this book are related to the potential impact of conducting polymer-based nanocomposites in various technical fields. Significant application areas have been identified for anti-corrosion, EMI shielding, sensing, and energy device relevance. Finally, the book covers predictable challenges and future opportunities in the field of conjugated nanocomposites. Integrates the fundamentals of conducting polymers and a range of multifunctional applications Describes categories of essential conducting polymer-based nanocomposites for polyaniline, polypyrrole, polythiophene, and derivative materials Assimilates the significance of multifunctional nanostructured materials of nanocomposite nanofibers Portrays current and future demanding technological applications of conjugated polymer-based nanocomposites, including anti-corrosion coatings, EMI shielding, sensors, and energy production and storage devices
Electrospun Polymers and Composites: Ultrafine Materials, High Performance Fibres and Wearables reviews the latest technological developments and innovations in electrospun polymers and composites, highlighting the multifunctionality of these ultrafine materials as high performance fibers. The book's chapters investigate a wide range of different electrospinning applications, including drug delivery, tissue scaffolding, fiber reinforcement and nanofiltration, with a particular focus on shape memory effect and the wearable characteristics of electrospun polymers and composites. This will be a valuable reference resource for research and for industrial communities working in the field of electrospinning. Covers two important material systems in electrospun materials, including electrospun polymers and composites Emphasizes areas in shape memory effect and wearable features of electrospun polymers and composites Presents a multidisciplinary work that will attract a wide spectrum of readers in chemical engineering, biomedical engineering, chemistry, pharmacy, environmental science, materials science and engineering, as well as mechanical and electrical engineering
Nanocomposites based on layered double hydroxides (LDHs) have recently become a formidable research area due to their amendable properties and potential applications. The distinct properties of LDH polymer nanocomposites include a wide range of chemical compositions, structural homogeneity, unique anion exchanging ability, easy synthesis, high bound water content, memory effect, non-toxicity and biocompatibility. This means that LDH polymer nanocomposites have the potential for new and innovative applications. Layered Double Hydroxide Polymer Nanocomposites presents a comprehensive overview of the recent innovative advances in the fabrication, characterization and applications of LDH polymer nanocomposites. As well as covering fundamental structural and chemical knowledge, this book also explores various properties and characterization techniques including microscopic, spectroscopic and mechanical behaviors. There is also a strong focus on the potential applications of LDH polymer nanocomposites, such as energy, electrical and electronic, electromagnetic shielding, biomedical, agricultural, food packaging and water purification functions. This book provides comprehensive coverage of cutting-edge research in the field of LDH polymer nanocomposites and their future applications. This book will be an essential read for all academics, researchers, engineers and students working in this area. Fundamental knowledge of LDH polymer nanocomposites, including chemical composition, structural features and fabrication techniques Provides an analytical overview of the different types of characterization techniques and technologies Extensive review on cutting-edge research for potential future applications, in a variety of industries
Polymer Nanocomposite Materials Discover an authoritative overview of zero-, one-, and two-dimensional polymer nanomaterials Polymer Nanocomposite Materials: Applications in Integrated Electronic Devices delivers an original and insightful treatment of polymer nanocomposite applications in energy, information, and biotechnology. The book systematically reviews the preparation and characterization of polymer nanocomposites from zero-, one-, and two-dimensional nanomaterials. The two distinguished editors have selected resources that thoroughly explore the applications of polymer nanocomposites in energy, information, and biotechnology devices like sensors, solar cells, data storage devices, and artificial synapses. Academic researchers and professional developers alike will enjoy one of the first books on the subject of this environmentally friendly and versatile new technology. Polymer Nanocomposite Materials discusses challenges associated with the devices and materials, possible strategies for future directions of the technology, and the possible commercial applications of electronic devices built on these materials. Readers will also benefit from the inclusion of: A thorough introduction to the fabrication of conductive polymer composites and their applications in sensors An exploration of biodegradable polymer nanocomposites for electronics and polymer nanocomposites for photodetectors Practical discussions of polymer nanocomposites for pressure sensors and the application of polymer nanocomposites in energy storage devices An examination of functional polymer nanocomposites for triboelectric nanogenerators and resistive switching memory Perfect for materials scientists and polymer chemists, Polymer Nanocomposite Materials: Applications in Integrated Electronic Devices will also earn a place in the libraries of sensor developers, electrical engineers, and other professionals working in the sensor industry seeking an authoritative one-stop reference for nanocomposite applications.