Download Free Polymer Based Integrated Photonic Devices For Highly Parallel Optical Interconnects Book in PDF and EPUB Free Download. You can read online Polymer Based Integrated Photonic Devices For Highly Parallel Optical Interconnects and write the review.

We have solved the crosslinker crystallization problem which has been a major bottleneck for several years. A new method of electrooptic measurenment is invented which has the advantage of being able to accurately measure r33 and r13 separately with a high accuracy. A theory of TE-TM mode conversion in tilted-poled NLO waveguides is developed. A new polarization-independent Mach-Zehnder modulator is designed and fabricated by using this theory. This device uses continuous modulation electrodes, thereby allowing the employment of traveling-wave modulation to achieve extremely high speed. Primary polarization-independent devices and directional-coupler devices have been fabricated. Further design and fabrication of new high performance electrooptic devices are under investigation.
Integrated photonic devices based on optical waveguides have been extensively studied for various applications, especially the high-speed intra- and inter-chip interconnects. Usually, a waveguide contains a core with high refractive index and cladding with lower refractive index. Among various waveguides, silicon, polymer, and silicon-polymer hybrid devices are the most promising candidates for low cost, small size, light weight, and low power consumption (CSWaP) optical interconnect. Firstly, silicon-based optical devices can be fabricated using CMOS compatible nanofabrication technology, which is already widely used to manufacture integrated circuits. Silicon photonic devices can have very small footprint and enable high density photonic circuits, due to high refractive index contrast. However, one of the intrinsic obstacles is the absence of [chi](2)-nonlinearity in unstrained silicon due to its centrosymmetric crystal structure, making modulating photons on silicon platform a great challenge. Secondly, polymer-based devices have been found very attractive, owing to the advantages of high thermo-optic (TO) or electro-optic (EO) coefficient, high transparency in the telecommunication wavelength windows, and fabrication feasibility over large areas on printed circuit board (PCB) or other kinds of substrates. The roll-to-roll (R2R) compatible imprinting and ink-jet printing for developing polymer-based devices on flexible or rigid substrates enable large-area, light-weight, low-cost optical interconnects. However, due to the low refractive index contrast, the polymer photonic devices always require large footprint. Finally, the silicon-organic hybrid (SOH) platform enables the marriage of the best of these two materials and thus has been receiving substantial attention. In this dissertation, integrated photonic devices based on silicon, polymer, or hybrid platform will be presented. First, high-efficiency quasi-vertical tapers for polymer waveguide based inter-board optical interconnects will be demonstrated. A triangular-shape tapered structure is adopted above the waveguide core to transform a fiber mode into a single mode polymer rib waveguide mode as an optical mode transformer. A coupling loss of 1.79±0.30 dB and 2.23±0.31 dB per coupler for the quasi-TM and quasi-TE mode respectively have been experimentally demonstrated, across the C and L bands (1535 nm – 1610 nm). Then, a reconfigurable thermo-optic polymer switch based true-time-delay network will be analyzed and demonstrated. Thirdly, I will show a novel subwavelength-grating waveguide ring resonator based high-speed modulators, which is the largest bandwidth and the most compact footprint that has been demonstrated for the ring resonators on the silicon-organic hybrid (SOH) platform. Finally, the on-chip time-division multiplexing and de-multiplexing system will be designed and analyzed.
With the ongoing, worldwide installation of 40 Gbit/s fiber optic transmission systems, there is an urgency to learn more about the photonic devices supporting this technology. Focusing on the components used to generate, modulate, and receive optical signals, High-Speed Photonic Devices presents the state-of- the-art enabling technologies behind h
Silicon is the dominant material in Microelectronics. Building photonic devices out of silicon can leverage the mature processing technologies developed in silicon CMOS. Silicon is also a very good waveguide material. It is highly transparent at 1550nm, and it has very high refractive index of 3.46. High refractive index enables building high index contrast waveguides with dimensions close to the diffraction limit. This provides the opportunity to build highly integrated photonic integrated circuit that can perform multiple functions on the same silicon chip, an optical parallel of the electronic integrated circuit. However, silicon does not have some of the necessary properties to build active optical devices such as lasers and modulators. For Example, silicon is an indirect band gap material that can't be used to make lasers. The centro-symmetric crystal structure in silicon presents no electro-optic effect. By contrast, electro-optic polymer can be engineered to show very strong electro-optic effect up to 300pm/V. In this research we have demonstrated highly compact and efficient devices that utilize the strong optical confinement ability in silicon and strong electro-optic effect in polymer. We have performed detailed investigations on the optical coupling to a slow light waveguide and developed solutions to improve the coupling efficiency to a slow light photonic crystal waveguides (PCW). These studies have lead to the demonstration of the most hybrid silicon modulator demonstrate to date and a compact chip scale true time delay module that can be implemented in future phased array antenna systems. In the future, people may be able to realize a photonic integrated circuit for optical communication or sensor systems using the devices we developed in our research.
Integrated Photonics for Data Communications Applications reviews the key concepts, design principles, performance metrics and manufacturing processes from advanced photonic devices to integrated photonic circuits. The book presents an overview of the trends and commercial needs of data communication in data centers and high-performance computing, with contributions from end users presenting key performance indicators. In addition, the fundamental building blocks are reviewed, along with the devices (lasers, modulators, photodetectors and passive devices) that are the individual elements that make up the photonic circuits. These chapters include an overview of device structure and design principles and their impact on performance. Following sections focus on putting these devices together to design and fabricate application-specific photonic integrated circuits to meet performance requirements, along with key areas and challenges critical to the commercial manufacturing of photonic integrated circuits and the supply chains being developed to support innovation and market integration are discussed. This series is led by Dr. Lionel Kimerling Executive at AIM Photonics Academy and Thomas Lord Professor of Materials Science and Engineering at MIT and Dr. Sajan Saini Education Director at AIM Photonics Academy at MIT. Each edited volume features thought-leaders from academia and industry in the four application area fronts (data communications, high-speed wireless, smart sensing, and imaging) and addresses the latest advances. Includes contributions from leading experts and end-users across academia and industry working on the most exciting research directions of integrated photonics for data communications applications Provides an overview of data communication-specific integrated photonics starting from fundamental building block devices to photonic integrated circuits to manufacturing tools and processes Presents key performance metrics, design principles, performance impact of manufacturing variations and operating conditions, as well as pivotal performance benchmarks
The two special volumes of Advances in Polymer Science entitled "Polymers for Photonics Applications" provide authoritative and critical reviews of up-to-date research and advances in various fields of photonic polymers as well as their promising applications. Eight articles contributed by internationally recognized scientists are concerned with polymers for second- and third-order nonlinear optics, quadratic parametric interactions in polymer waveguides, electroluminescent polymers for light sources, photoreflective polymers for holographic information storage, and highly efficient two-photon absorbing organics and polymers, including their applications. This review should provide individuals working in the field of photonic polymers with invaluable scientific knowledge on the state of the art while giving directions for future research to those deeply interested.
Proceedings of SPIE present the original research papers presented at SPIE conferences and other high-quality conferences in the broad-ranging fields of optics and photonics. These books provide prompt access to the latest innovations in research and technology in their respective fields. Proceedings of SPIE are among the most cited references in patent literature.
This is the final report of a three-year, Laboratory-Directed Research and Development (LDRD) project at the Los Alamos National Laboratory (LANL). The recent discovery of electroluminescent polymers opens up, for the first time, the possibility of using optical interconnects for conventional silicon integrated circuits (ICs). If this capability can be realized, it will have a tremendous impact on the architecture and performance of complex computing and communication systems. The primary objective of this project was to understand the light-emission mechanism of electroluminescent polymers and to use this knowledge to make efficient light-emitting-polymer diodes (LEPDs). These devices are the critical missing element for a polymer-based integrated-optical interconnect technology. The authors studied and obtained experimental results in several areas including the energetic position of fundamental excitation, the degradation of the polymer caused by oxygen, and the luminescence efficiency of polymer and oligomers. Parallel to the experimental effort, theoretical calculations were performed on the microscopic scale and on the device scale.
This text covers the subjects of computer architecture and parallel and high-performance computing.
Photonic Interconnects for Computing Systems provides a comprehensive overview of the current state-of-the-art technology and research achievements in employing silicon photonics for interconnection networks and high-performance computing, summarizing main opportunities and some challenges.